1
|
Sun ML, Wang HY, Feng Y, Ren JT, Wang L, Yuan ZY. Electrodegradation of nitrogenous pollutants in sewage: from reaction fundamentals to energy valorization applications. Chem Soc Rev 2024; 53:11908-11966. [PMID: 39498737 DOI: 10.1039/d4cs00517a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
The excessive accumulation of nitrogen pollutants (mainly nitrate, nitrite, ammonia nitrogen, hydrazine, and urea) in water bodies seriously disrupts the natural nitrogen cycle and poses a significant threat to human life and health. Electrolysis is considered a promising method to degrade these nitrogenous pollutants in sewage, with the advantages of high efficiency, wide generality, easy operability, retrievability, and environmental friendliness. For particular energy devices, including metal-nitrate batteries, direct fuel cells, and hybrid water electrolyzers, the realization of energy valorization from sewage purification processes (e.g., valuable chemical generation, electricity output, and hydrogen production) becomes feasible. Despite the progress in the research on pollutant electrodegradation, the development of electrocatalysts with high activity, stability, and selectivity for pollutant removal, coupled with corresponding energy devices, remains a challenge. This review comprehensively provides advanced insights into the electrodegradation processes of nitrogenous pollutants and relevant energy valorization strategies, focusing on the reaction mechanisms, activity descriptors, electrocatalyst design, and actuated electrodes and operation parameters of tailored energy conversion devices. A feasibility analysis of electrodegradation on real wastewater samples from the perspective of pollutant concentration, pollutant accumulation, and electrolyte effects is provided. Challenges and prospects for the future development of electrodegradation systems are also discussed in detail to bridge the gap between experimental trials and commercial applications.
Collapse
Affiliation(s)
- Ming-Lei Sun
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Hao-Yu Wang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Yi Feng
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Jin-Tao Ren
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Lei Wang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Zhong-Yong Yuan
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| |
Collapse
|
2
|
Luo X, Wu Y, Hu H, Wei T, Wu B, Ding J, Liu Q, Luo J, Liu X. Boron-Doped Ti 3C 2T x MXene for Effective and Durable High-Current-Density Ammonia Synthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403399. [PMID: 39045897 DOI: 10.1002/smll.202403399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/14/2024] [Indexed: 07/25/2024]
Abstract
Ammonia (NH3) synthesis via the nitrate reduction reaction (NO3RR) offers a competitive strategy for nitrogen cycling and carbon neutrality; however, this is hindered by the poor NO3RR performance under high current density. Herein, it is shown that boron-doped Ti3C2Tx MXene nanosheets can highly efficiently catalyze the conversion of NO3RR-to-NH3 at ambient conditions, showing a maximal NH3 Faradic efficiency of 91% with a peak yield rate of 26.2 mgh-1 mgcat. -1, and robust durability over ten consecutive cycles, all of them are comparable to the best-reported results and exceed those of pristine Ti3C2Tx MXene. More importantly, when tested in a flow cell, the designed catalyst delivers a current density of ‒1000 mA cm-2 at a low potential of ‒1.18 V versus the reversible hydrogen electrode and maintains a high NH3 selectivity over a wide current density range. Besides, a Zn-nitrate battery with the catalyst as the cathode is assembled, which achieves a power density of 5.24 mW cm-2 and a yield rate of 1.15 mgh-1 mgcat. -1. Theoretical simulations further demonstrate that the boron dopants can optimize the adsorption and activation of NO3RR intermediates, and reduce the potential-determining step barrier, thus leading to an enhanced NH3 selectivity.
Collapse
Affiliation(s)
- Xia Luo
- Research Institute of Petroleum Exploration & Development, PetroChina, Beijing, 100083, China
| | - Yeyu Wu
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Applied Analytical Chemistry, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China
| | - Huihui Hu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi, 530004, China
| | - Tianran Wei
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi, 530004, China
| | - Baoshan Wu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Junyang Ding
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi, 530004, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Jun Luo
- ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Longhua District, Shenzhen, 518110, China
| | - Xijun Liu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi, 530004, China
| |
Collapse
|
3
|
Zhao R, Wang Y, Fu J, Zhang F, Wen L, Zhao Y, Guan B, Han B, Liu Z. Achieving over 90% Faradaic Efficiency in Cyclohexanone Oxime Electrosynthesis Using the Cu-Mo Dual-Site Catalyst. J Am Chem Soc 2024; 146:27956-27963. [PMID: 39317968 DOI: 10.1021/jacs.4c11413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Coupling with the nitrate electroreduction reaction (NitRR), the electrosynthesis of cyclohexanone oxime (CHO, the vital feedstock in the nylon-6 industry) from cyclohexanone provides a promising alternative to the traditional energy consumption process. However, it still suffers from low efficiency because selective production of *NH2OH intermediate from NitRR under large current densities is challenging. We here report a Cu1MoOx/nitrogen-doped carbon (NC) electrocatalyst with high-density Cu-Mo dual sites for NitRR to selectively produce and stabilize *NH2OH, with the subsequent cyclohexanone oximation achieving the highest CHO Faradaic efficiency of 94.5% and a yield rate of 3.0 mol g-1 h-1 at an industrially relevant current density of 0.5 A cm-2. Furthermore, in situ characterizations evidenced that the Cu-Mo dual sites in Cu1MoOx/NC effectively inhibited hydrodeoxygenation of hydroxyl-containing intermediates of NitRR, selectively producing *NH2OH and thus achieving cyclohexanone oximation with high efficiency. This work provides a high-performance catalyst for CHO electrosynthesis from nitrogenous waste, showing promising application potential in industrial production of CHO.
Collapse
Affiliation(s)
- Runyao Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yiding Wang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jiaju Fu
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Fengtao Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Linzi Wen
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yanfei Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Bo Guan
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhimin Liu
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
4
|
Guo J, Haghshenas Y, Jiao Y, Kumar P, Yakobson BI, Roy A, Jiao Y, Regenauer-Lieb K, Nguyen D, Xia Z. Rational Design of Earth-Abundant Catalysts toward Sustainability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407102. [PMID: 39081108 DOI: 10.1002/adma.202407102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/06/2024] [Indexed: 10/18/2024]
Abstract
Catalysis is crucial for clean energy, green chemistry, and environmental remediation, but traditional methods rely on expensive and scarce precious metals. This review addresses this challenge by highlighting the promise of earth-abundant catalysts and the recent advancements in their rational design. Innovative strategies such as physics-inspired descriptors, high-throughput computational techniques, and artificial intelligence (AI)-assisted design with machine learning (ML) are explored, moving beyond time-consuming trial-and-error approaches. Additionally, biomimicry, inspired by efficient enzymes in nature, offers valuable insights. This review systematically analyses these design strategies, providing a roadmap for developing high-performance catalysts from abundant elements. Clean energy applications (water splitting, fuel cells, batteries) and green chemistry (ammonia synthesis, CO2 reduction) are targeted while delving into the fundamental principles, biomimetic approaches, and current challenges in this field. The way to a more sustainable future is paved by overcoming catalyst scarcity through rational design.
Collapse
Affiliation(s)
- Jinyang Guo
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yousof Haghshenas
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yiran Jiao
- School of Chemical Engineering, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Priyank Kumar
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Boris I Yakobson
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas, 77251, USA
| | - Ajit Roy
- U.S. Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio, USA
| | - Yan Jiao
- School of Chemical Engineering, University of Adelaide, Adelaide, SA, 5005, Australia
- Australian Research Council Centre of Excellence for Carbon Science and Innovation, Canberra, ACT, 2601, Australia
| | - Klaus Regenauer-Lieb
- Australian Research Council Centre of Excellence for Carbon Science and Innovation, Canberra, ACT, 2601, Australia
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA, 6151, Australia
| | | | - Zhenhai Xia
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Research Council Centre of Excellence for Carbon Science and Innovation, Canberra, ACT, 2601, Australia
| |
Collapse
|
5
|
Wang H, Du G, Jia J, Huang J, Tu M, Zhang J, Peng Y, Li H, Xu C. Ru-Doped NiFe-MIL-53 with Facilitated Reconstruction and Active Hydrogen Supplement for Enhanced Nitrate Reduction. Inorg Chem 2024; 63:9212-9220. [PMID: 38718298 DOI: 10.1021/acs.inorgchem.4c00766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
The Electrochemical reduction of nitrate to ammonia (NH3) is a process of great significance to energy utilization and environmental protection. However, it suffers from sluggish multielectron/proton-involved steps involving coupling reactions between different reaction intermediates and active hydrogen species (Hads) produced by water decomposition. In this study, a Ru-doped NiFe-MIL-53 (NiFeRu-MIL-53) supported on Ni foam (NF) has been designed for the nitrate reduction reaction (NO3RR). The NiFeRu-MIL-53 exhibits excellent NO3RR activity with a maximum Faradaic efficiency (FE) of 100% at -0.4 V vs. RHE for NH3 and a maximum NH3 yield of 62.39 mg h-1 cm-2 at -0.7 V vs. RHE in alkaline media. This excellent performance for the NO3RR is attributed to a strong synergistic effect between Ru and reconstructed NiFe(OH)2. Additionally, the doped Ru facilitates water dissociation, leading to an appropriate supply of Hads required for N species hydrogenation during NO3RR, thereby further enhancing its performance. Furthermore, in situ Raman analysis reveals that incorporating Ru facilitates the reconstruction of MOFs and promotes the formation of hydroxide active species during the NO3RR process. This work provides a valuable strategy for designing electrocatalysts to improve the efficiency of the reduction of electrochemical nitrate to ammonia.
Collapse
Affiliation(s)
- Huijiao Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Gening Du
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jinzhi Jia
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Junfeng Huang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Mudong Tu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jinhua Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yong Peng
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Hua Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Cailing Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
6
|
Ding M, Tian K, Wang J, Liu Y, Hu G, Zheng Y, Lei S, Sun J, Yang HB, Hu FX. Integrated molybdenum single atom array sensors with multichannels for nitrite detection in foods. Biosens Bioelectron 2024; 257:116345. [PMID: 38692247 DOI: 10.1016/j.bios.2024.116345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/15/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
Nitrite (NO2-) is present in a variety of foods, but the excessive intake of NO2- can indirectly lead to carcinogenic, teratogenic, mutagenicity and other risks to the human body. Therefore, the detection of NO2- is crucial for maintaining human health. In this study, an integrated array sensor for NO2- detection is developed based on molybdenum single atom material (IMSMo-SAC) using high-resolution electrohydrodynamic (EHD) printing technology. The sensor comprises three components: a printed electrode array, multichannels designed on polydimethylsiloxane (PDMS) and an electronic signal process device with bluetooth. By utilizing Mo-SAC to facilitate electron transfer during the redox reaction, rapid and efficient detection of NO2- can be achieved. The sensor has a wide linear range of 0.1 μM-107.8 mM, a low detection limit of 33 nM and a high sensitivity of 0.637 mA-1mM-1 cm-2. Furthermore, employing this portable array sensor allows simultaneously measurements of NO2- concentrations in six different foods samples with acceptable recovery rates. This array sensor holds great potential for detecting of small molecules in various fields.
Collapse
Affiliation(s)
- Mei Ding
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, JiangSu Province, 215009, China
| | - Kangling Tian
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, JiangSu Province, 215009, China
| | - Jingwen Wang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, JiangSu Province, 215009, China
| | - Yuhang Liu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, JiangSu Province, 215009, China
| | - Guangxuan Hu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, JiangSu Province, 215009, China
| | - Yan Zheng
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, JiangSu Province, 215009, China
| | - Shaohui Lei
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, JiangSu Province, 215009, China
| | - Jiayue Sun
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, JiangSu Province, 215009, China
| | - Hong Bin Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, JiangSu Province, 215009, China.
| | - Fang Xin Hu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, JiangSu Province, 215009, China.
| |
Collapse
|
7
|
Liu L, Zheng SJ, Chen H, Cai J, Zang SQ. Tandem Nitrate-to-Ammonia Conversion on Atomically Precise Silver Nanocluster/MXene Electrocatalyst. Angew Chem Int Ed Engl 2024; 63:e202316910. [PMID: 38179795 DOI: 10.1002/anie.202316910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/06/2024]
Abstract
Electrocatalytic reduction of nitrate (NO3 RR) to synthesize ammonia (NH3 ) provides a competitive manner for carbon neutrality and decentralized NH3 synthesis. Atomically precise nanoclusters, as an advantageous platform for investigating the NO3 RR mechanisms and actual active sites, remain largely underexplored due to the poor stability. Herein, we report a (NH4 )9 [Ag9 (mba)9 ] nanoclusters (Ag9 NCs) loaded on Ti3 C2 MXene (Ag9 /MXene) for highly efficient NO3 RR performance towards ambient NH3 synthesis with improved stability in neutral medium. The composite structure of MXene and Ag9 NCs enables a tandem catalysis process for nitrate reduction, significantly increasing the selectivity and FE of NH3 . Besides, compared with individual Ag9 NCs, Ag9 /MXene has better stability with the current density performed no decay after 108 hours of reaction. This work provides a strategy for improving the catalytic activity and stability of atomically precise metal NCs, expanding the mechanism research and application of metal NCs.
Collapse
Affiliation(s)
- Lin Liu
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Su-Jun Zheng
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Hong Chen
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Jinmeng Cai
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
8
|
Wu X, Wang Y, Wu ZS. Recent advancement and key opportunities of MXenes for electrocatalysis. iScience 2024; 27:108906. [PMID: 38318370 PMCID: PMC10839268 DOI: 10.1016/j.isci.2024.108906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
MXenes are promising materials for electrocatalysis due to their excellent metallic conductivity, hydrophilicity, high specific surface area, and excellent electrochemical properties. Herein, we summarize the recent advancement of MXene-based materials for electrocatalysis and highlight their key challenges and opportunities. In particular, this review emphasizes on the major design principles of MXene-based electrocatalysts, including (1) coupling MXene with active materials or heteroatomic doping to create highly active synergistic catalyst sites; (2) construction of 3D MXene structure or introducing interlayer spacers to increase active areas and form fast mass-charge transfer channel; and (3) protecting edge of MXene or in situ transforming the surface of MXene to stable active substance that inhibits the oxidation of MXene and then enhances the stability. Consequently, MXene-based materials exhibit outstanding performance for a variety of electrocatalytic reactions. Finally, the key challenges and promising prospects of the practical applications of MXene-based electrocatalysts are briefly proposed.
Collapse
Affiliation(s)
- Xianhong Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yi Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| | - Zhong-Shuai Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|