1
|
Jia H, Liao Q, Liu W, Cipriano LA, Jiang H, Dixneuf PH, Vilé G, Zhang M. Reductive Coupling of N-Heteroarenes and 1,2-Dicarbonyls for Direct Access to γ-Amino Acids, Esters, and Ketones Using a Heterogeneous Single-Atom Iridium Catalyst. J Am Chem Soc 2024; 146:31647-31655. [PMID: 39508518 DOI: 10.1021/jacs.4c09827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Despite their significant importance, the challenges in direct and diverse synthesis of N-heterocyclic γ-amino acids/esters/ketones hamper exploration of their applications. Herein, by developing a multifunctional heterogeneous iridium single-atom catalyst composed of silica-confined iridium species and a boron-doped ZrO2 support (Ir-SAs@B-ZrO2/SiO2), we describe its utility in establishing a new reductive coupling reaction of N-heteroarenes and 1,2-dicarbonyls for selective and diverse construction of the as-described compounds in a straightforward manner. The striking features, including good substrate and functionality tolerance, high step and atom economy, exceptional catalyst reusability, and diversified product post-transformations, highlight the practicality of the developed chemistry. Mechanistic studies reveal that the synergy between the active Ir sites and acidic support favors a chemoselective reduction of the more inert N-heteroarenes and affords requisite enamine intermediates. In this work, the concept on precise transformation of reductive intermediates will open a door to further develop useful tandem reactions by rational catalyst design.
Collapse
Affiliation(s)
- Huanhuan Jia
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering South China University of Technology, Wushan Rd-381, Guangzhou 510641, P.R. China
| | - Qi Liao
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering South China University of Technology, Wushan Rd-381, Guangzhou 510641, P.R. China
| | - Wei Liu
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering South China University of Technology, Wushan Rd-381, Guangzhou 510641, P.R. China
| | - Luis A Cipriano
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo Vinci 32, Milan I-20133, Italy
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering South China University of Technology, Wushan Rd-381, Guangzhou 510641, P.R. China
| | | | - Gianvito Vilé
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo Vinci 32, Milan I-20133, Italy
| | - Min Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering South China University of Technology, Wushan Rd-381, Guangzhou 510641, P.R. China
| |
Collapse
|
2
|
Chen W, Yu Y, Du Y, Wang Y, Zhao Y, Guo K, Yuan P, Zhang JN, Qu G. A Click Chemistry Strategy Toward Spin-Polarized Transition-Metal Single Site Catalysts for Dynamic Probing of Sulfur Redox Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409369. [PMID: 39285844 DOI: 10.1002/adma.202409369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/23/2024] [Indexed: 11/08/2024]
Abstract
Catalytic conversion of lithium polysulfides (LiPSs) is a crucial approach to enhance the redox kinetics and suppress the shuttle effect in lithium-sulfur (Li-S) batteries. However, the roles of a typical heterogenous catalyst cannot be easily identified due to its structural complexity. Compared with the distinct sites of single atom catalysts (SACs), each active site of single site catalysts (SSCs) is identical and uniform in their spatial energy, binding mode, and coordination sphere, etc. Benefiting from the well-defined structure, iron phthalocyanine (FePc) is covalently clicked onto CuO nanosheet to prepare low spin-state Fe SSCs as the model catalyst for Li-S electrochemistry. The periodic polarizability evolution of Fe-N bonding is probed during sulfur redox reaction by in situ Raman spectra. Theoretical analysis shows the decreased d-band center gap of Fe (Δd) and delocalization of dxz/dyz after the axial click confinement. Consequently, Li-S batteries with Fe SSCs exhibit a capacity decay rate of 0.029% per cycle at 2 C. The universality of this methodological approach is demonstrated by a series of M SSCs (M = Mn, Co, and Ni) with similar variation of electronic configuration. This work provides guidance for the design of efficient electrocatalysis in Li-S batteries.
Collapse
Affiliation(s)
- Weijie Chen
- Key Laboratory of Advanced Energy Catalytic and Functional Materials Preparation of Zhengzhou City, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yue Yu
- Key Laboratory of Advanced Energy Catalytic and Functional Materials Preparation of Zhengzhou City, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yu Du
- Key Laboratory of Advanced Energy Catalytic and Functional Materials Preparation of Zhengzhou City, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yu Wang
- Key Laboratory of Advanced Energy Catalytic and Functional Materials Preparation of Zhengzhou City, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yan Zhao
- Key Laboratory of Advanced Energy Catalytic and Functional Materials Preparation of Zhengzhou City, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Kai Guo
- Key Laboratory of Advanced Energy Catalytic and Functional Materials Preparation of Zhengzhou City, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Pengfei Yuan
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai, 265503, P. R. China
| | - Jia-Nan Zhang
- Key Laboratory of Advanced Energy Catalytic and Functional Materials Preparation of Zhengzhou City, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Gan Qu
- Key Laboratory of Advanced Energy Catalytic and Functional Materials Preparation of Zhengzhou City, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
3
|
Schmidt-Räntsch T, Verplancke H, Kehl A, Sun J, Bennati M, Holthausen MC, Schneider S. C=C Dissociative Imination of Styrenes by a Photogenerated Metallonitrene. JACS AU 2024; 4:3421-3426. [PMID: 39328761 PMCID: PMC11423323 DOI: 10.1021/jacsau.4c00571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024]
Abstract
Photolysis of a platinum(II) azide complex in the presence of styrenes enables C=C double bond cleavage upon dissociative olefin imination to aldimido (PtII-N=CHPh) and formimido (PtII-N=CH2) complexes as the main products. Spectroscopic and quantum chemical examinations support a mechanism that commences with the decay of the metallonitrene photoproduct (PtII-N) via bimolecular coupling and nitrogen loss as N2. The resulting platinum(I) complex initiates a radical chain mechanism via a dinuclear radical-bridged species (PtII-CH2CHPhN•-PtII) as a direct precursor to C-C scission. The preference for the PtI mediated route over styrene aziridination is attributed to the distinct nucleophilicity of the triplet metallonitrene.
Collapse
Affiliation(s)
- Till Schmidt-Räntsch
- Institut für Anorganische Chemie and International Center for Advanced Studies of Energy Conversion, Georg-August-Universität Göttingen, Tammannstraße 4, 37077 Göttingen, Germany
| | - Hendrik Verplancke
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany
| | - Annemarie Kehl
- Research Group EPR spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
- Institut für Physikalische Chemie, Tammannstraße 6, 37077 Göttingen, Germany
| | - Jian Sun
- Institut für Anorganische Chemie and International Center for Advanced Studies of Energy Conversion, Georg-August-Universität Göttingen, Tammannstraße 4, 37077 Göttingen, Germany
| | - Marina Bennati
- Research Group EPR spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
- Institut für Physikalische Chemie, Tammannstraße 6, 37077 Göttingen, Germany
| | - Max C Holthausen
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany
| | - Sven Schneider
- Institut für Anorganische Chemie and International Center for Advanced Studies of Energy Conversion, Georg-August-Universität Göttingen, Tammannstraße 4, 37077 Göttingen, Germany
| |
Collapse
|
4
|
Lu Y, Zhu M, Chen S, Yao J, Li T, Wang X, Tang C. Single-Atom Fe-Catalyzed Acceptorless Dehydrogenative Coupling to Quinolines. J Am Chem Soc 2024; 146:23338-23347. [PMID: 39105742 DOI: 10.1021/jacs.4c06145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
A single-atom iron catalyst was found to exhibit exceptional reactivity in acceptorless dehydrogenative coupling for quinoline synthesis, outperforming known homogeneous and nanocatalyst systems. Detailed characterizations, including aberration-corrected HAADF-STEM, XANES, and EXAFS, jointly confirmed the presence of atomically dispersed iron centers. Various functionalized quinolines were efficiently synthesized from different amino alcohols and a range of ketones or alcohols. The iron single-atom catalyst achieved a turnover number (TON) of up to 105, far exceeding the results of current homogeneous and nanocatalyst systems. Detailed mechanistic studies verified the significance of single-atom Fe sites in the dehydrogenation process.
Collapse
Affiliation(s)
- Yanze Lu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Meiling Zhu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Sanxia Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Jiewen Yao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Ting Li
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Xu Wang
- Institute of Advanced Science Facilities, Shenzhen (IASF), No. 268 Zhenyuan Road, Guangming District, Shenzhen 518107, China
| | - Conghui Tang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| |
Collapse
|
5
|
Tian H, Ding CY, Liao RZ, Li M, Tang C. Cobalt-Catalyzed Acceptorless Dehydrogenation of Primary Amines to Nitriles. J Am Chem Soc 2024; 146:11801-11810. [PMID: 38626455 DOI: 10.1021/jacs.4c00493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
The direct double dehydrogenation from primary amines to nitriles without an oxidant or hydrogen acceptor is both intriguing and challenging. In this paper, we describe a non-noble metal catalyst capable of realizing such a transformation with high efficiency. A cobalt-centered N,N-bidentate complex was designed and employed as a metal-ligand cooperative dehydrogenation catalyst. Detailed kinetic studies, control experiments, and DFT calculations revealed the crucial hydride transfer, proton transfer, and hydrogen evolution processes. Finally, a tandem outer-sphere/inner-sphere mechanism was proposed for the dehydrogenation of amines to nitriles through an imine intermediate.
Collapse
Affiliation(s)
- Haitao Tian
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Cai-Yun Ding
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Rong-Zhen Liao
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Man Li
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Conghui Tang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| |
Collapse
|
6
|
Sun JL, Jiang H, Dixneuf PH, Zhang M. Multicomponent Reductive Coupling for Selective Access to Functional γ-Lactams by a Single-Atom Cobalt Catalyst. J Am Chem Soc 2024. [PMID: 38512775 DOI: 10.1021/jacs.4c00547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Despite their significant importance to numerous fields, the difficulties in direct and diverse synthesis of α-hydroxy-γ-lactams pose substantial obstacles to their practical applications. Here, we designed a nitrogen and TiO2 co-doped graphitic carbon-supported material with atomically dispersed cobalt sites (CoSA-N/NC-TiO2), which was successfully applied as a multifunctional catalyst to establish a general method for direct construction of α-hydroxy-γ-lactams from cheap and abundant nitro(hetero)arenes, aldehydes, and H2O with alkynoates. The striking features of operational simplicity, broad substrate and functionality compatibility (>100 examples), high step and atom efficiency, good selectivity, and exceptional catalyst reusability highlight the practicality of this new catalytic transformation. Mechanistic studies reveal that the active CoN4 species and the dopants exhibit a synergistic effect on the formation of key acid-masked nitrones; their subsequent nucleophilic addition to the alkynoates followed by successive reduction, alkenyl hydration, and intramolecular ester ammonolysis delivers the desired products. In this work, the concept of reduction interruption leading to new reaction route will open a door to further develop useful transformations by rational catalyst design.
Collapse
Affiliation(s)
- Jia-Lu Sun
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | | | - Min Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
7
|
Jiang Y, Chen S, Chen Y, Gu A, Tang C. Sustainable Aerobic Allylic C-H Bond Oxidation with Heterogeneous Iron Catalyst. J Am Chem Soc 2024; 146:2769-2778. [PMID: 38240486 DOI: 10.1021/jacs.3c12688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Emerging techniques are revolutionizing the realm of chemical synthesis by introducing new avenues for C-H bond functionalization, which have been exploited for the synthesis of pharmaceuticals, natural compounds, and functional materials. Allylic C-H bond oxidation of alkenes serves as possibly the most employed C-H bond functionalization reaction. However, sustainable and selective approaches remain scarce, and the majority of the existing conditions still hinge on hazardous oxidants or costly metal catalysts. In this context, we introduce a heterogeneous iron catalyst that addresses the above-mentioned concerns by showcasing the aerobic oxidation of steroids, terpenes, and simple olefins to the corresponding enone products. This novel method provides a powerful tool for the arsenal of allylic C-H bond oxidation while minimizing the environmental concerns.
Collapse
Affiliation(s)
- Yijie Jiang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Sanxia Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Yuangu Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Ailing Gu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Conghui Tang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| |
Collapse
|