1
|
Yang S, Fang X. Copper-catalyzed yne-allylic substitutions: concept and recent developments. Beilstein J Org Chem 2024; 20:2739-2775. [PMID: 39498447 PMCID: PMC11533123 DOI: 10.3762/bjoc.20.232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/07/2024] [Indexed: 11/07/2024] Open
Abstract
The catalytic (asymmetric) allylation and propargylation have been established as powerful strategies allowing access to enantioenriched α-chiral alkenes and alkynes. In this context, combining allylic and propargylic substitutions offers new opportunities to expand the scope of transition metal-catalyzed substitution reactions. Since its discovery in 2022, copper-catalyzed yne-allylic substitution has undergone rapid development and significant progress has been made using the key copper vinyl allenylidene intermediates. This review summarizes the developments and illustrates the influences of copper salt, ligand, and substitution pattern of the substrate on the regioselectivity and stereoselectivity.
Collapse
Affiliation(s)
- Shuang Yang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Xinqiang Fang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| |
Collapse
|
2
|
Wen YH, Liu M, Wang YH, Gong QW, Li S, Song J, Gong LZ. Remote Enantioselective ϵ-Alkylation of Copper Ethynylallenylidenes: Precise Control of Central and Axial Chirality. Angew Chem Int Ed Engl 2024:e202416089. [PMID: 39418168 DOI: 10.1002/anie.202416089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024]
Abstract
Chiral tetrasubstituted allenes have emerged as important architectures for engineering biologically active compounds. The construction of unique tetrasubstituted allene scaffolds with precise control of continuous central and axial chirality remains yet to be developed. Here, we report a remote enantioselective ϵ-alkylation of yne-propargylic acetates with enals enabled by NHC and copper cooperative catalysis, leading to a series of tetrasubstituted allenes with excellent enantioselectivities (up to >99 % ee) and diastereoselectivities (up to >95 : 5 dr). This method features high regioselectivity and simultaneous control of axial and central chirality. Mechanistic studies suggest a cooperative activation mode and synergistic control of distal chirality created from the copper ethynylallenylidenes.
Collapse
Affiliation(s)
- Yu-Hua Wen
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Minghao Liu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Yu-Hao Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Qian-Wei Gong
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Shuai Li
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Jin Song
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Liu-Zhu Gong
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
3
|
Hikawa H, Fukuda A, Kondo K, Nakayama T, Enda T, Kikkawa S, Azumaya I. Au(III)/TPPMS-catalyzed Friedel-Crafts benzylation of deactivated N-alkylanilines in water. Org Biomol Chem 2024; 22:7874-7879. [PMID: 39235437 DOI: 10.1039/d4ob01234h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
The Friedel-Crafts reaction of electronically deactivated anilines including those with strong electron-withdrawing NO2, CN or CO2H groups is challenging due to the reduced electron density of the aromatic ring. Here, we demonstrate the Au(III)/TPPMS-catalyzed Friedel-Crafts benzylation of deactivated anilines in water. This reaction exhibits operational simplicity and a broad substrate scope with high regioselectivity, enabling rapid access to 2-benzylanilines.
Collapse
Affiliation(s)
- Hidemasa Hikawa
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan.
| | - Akane Fukuda
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan.
| | - Kazuma Kondo
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan.
| | - Taku Nakayama
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan.
| | - Tomokatsu Enda
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan.
| | - Shoko Kikkawa
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan.
| | - Isao Azumaya
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan.
| |
Collapse
|
4
|
Li J, Liao M, Zhu H, Han Z, Sun J, Huang H. Mild and Catalytic Synthesis of Pyrroles from Vinyl Ethynylethylene Carbonates. J Org Chem 2024; 89:12935-12945. [PMID: 39226303 DOI: 10.1021/acs.joc.4c00853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
A tandem remote propargylic amination/ring closure/aromatization reaction of vinyl ethynylethylene carbonates and amines has been developed, successfully constructing pyrrole derivatives. The reaction features mild conditions, high regioselectivity, high yields, and good functional group tolerance, making it an efficient method for pyrrole synthesis. Importantly, a variety of substrates containing natural product skeletons could also be compatibly and efficiently converted into pyrroles under the reaction conditions.
Collapse
Affiliation(s)
- Jixing Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, No. 21 Gehu Road, Changzhou, 213164, P. R. China
| | - Maoyan Liao
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, No. 21 Gehu Road, Changzhou, 213164, P. R. China
| | - Haihui Zhu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, No. 21 Gehu Road, Changzhou, 213164, P. R. China
| | - Zhengyu Han
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, No. 21 Gehu Road, Changzhou, 213164, P. R. China
| | - Jianwei Sun
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Hai Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, No. 21 Gehu Road, Changzhou, 213164, P. R. China
| |
Collapse
|
5
|
Yao C, Li DR, Xiang HM, Li SJ, Lu Y, Wang Z, Yin T, Wang J, Feng K, Zhu C, Xu H. Copper-catalysed asymmetric annulation of yne-allylic esters with amines to access axially chiral arylpyrroles. Nat Commun 2024; 15:6848. [PMID: 39127693 DOI: 10.1038/s41467-024-50896-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
The construction of atropisomers with 1,2-diaxes, while maintaining high enantiocontrol, presents a significant challenge due to the dynamic nature of steric hindrance at ortho-aryl substituents. Although various catalytic asymmetric methods have been developed for accessing axially chiral arylpyrroles, the synthesis of axially chiral arylpyrroles with 1,2-diaxes in a catalytic asymmetric manner has remained rare. Herein, the authors report the synthesis of diverse axially chiral arylpyrroles with 1,2-diaxes, and C-C and C-N axes through copper-catalysed asymmetirc [4 + 1] annulation of yne-allylic esters with arylamines via a remote stereocontrol strategy. This approach provides facile access to a broad range of heterobiaryl atropisomers (67 examples) in excellent enantioselectivities, each bearing one or two C-C/C-N axes, demonstrating its versatility and efficiency. The utility of this methodology is further highlighted by the transformation of the product into chiral phosphine ligand, and chiral thioureas for the use in asymmetric catalysis.
Collapse
Affiliation(s)
- Chaochao Yao
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education. State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Dan-Ran Li
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education. State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Hua-Ming Xiang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education. State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Si-Jia Li
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education. State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Yuepeng Lu
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education. State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Zihao Wang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education. State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Tingrui Yin
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education. State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Jiaqiang Wang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education. State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Kongling Feng
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education. State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Cuiju Zhu
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education. State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Hao Xu
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education. State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
6
|
Wang XR, Li MD, Wang ZH, Zhu H, Wang JR, Wei YY, Lin TY. Copper-Catalyzed Dual Remote Asymmetric Vinylogous Alkynylallylic Substitution of Yne-Allylic Esters with Coumarins. Org Lett 2024; 26:6407-6412. [PMID: 39029092 DOI: 10.1021/acs.orglett.4c02199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Chiral coumarins and their derivatives are ubiquitous structural motifs found in an array of biologically and therapeutically active natural products and drugs. Herein, a highly enantioselective dual remote copper-catalyzed vinylogous alkynylallylic substitution of yne-allylic esters with coumarins has been developed. The practicality of this method is exemplified by the use of readily available starting materials; mild reaction conditions; excellent regio-, enantio-, and stereoselectivities; and the very broad substrate scope (67 examples), while the scalability and further applications of this method are illustrated by the gram-scale reaction and the series of derivations of the products.
Collapse
Affiliation(s)
- Xin-Ru Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Meng-Die Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Zi-Han Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Hui Zhu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Jia-Run Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Ying-Ying Wei
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Tao-Yan Lin
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| |
Collapse
|
7
|
Lin TY, Li MD, Wang R, Wang X. Copper-Catalyzed Remote Asymmetric Yne-Allylic Substitution of Yne-Allylic Esters with Anthrones. Org Lett 2024; 26:5758-5763. [PMID: 38949506 DOI: 10.1021/acs.orglett.4c01916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Anthrones are key structural motifs in many natural products and pharmaceutical chemicals. However, due to its unique tricyclic aromatic structure, the synthetic space for the development of chiral anthrone derivatives is largely limited. By utilizing the potential of the copper-catalyzed remote asymmetric yne-allylic substitution reaction, we describe the first example of copper-catalyzed highly regio- and enantioselective remote yne-allylic substitution on various yne-allylic esters with anthrones under a mild reaction condition, which afforded a range of enantioenriched 1,3-enynes with exhibiting broad functional group tolerance across 51 examples.
Collapse
Affiliation(s)
- Tao-Yan Lin
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China
| | - Meng-Die Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China
| | - Rui Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China
| | - Xinru Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China
| |
Collapse
|
8
|
Lu HY, Li ZH, Lin GQ, He ZT. Asymmetric copper-catalyzed alkynylallylic monofluoroalkylations with fluorinated malonates. Chem Commun (Camb) 2024; 60:4210-4213. [PMID: 38525587 DOI: 10.1039/d4cc00371c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The unprecedented copper-catalyzed asymmetric alkynylallylic monofluoroalkylation reaction is described via the use of 1,3-enynes and fluorinated malonates. A series of 1,4-enynes bearing a monofluoroalkyl unit are achieved in high yields, excellent regio- and enantioselectivity and high E/Z selectivity. The asymmetric propargylic monofluoroalkylation is also developed. The reliability and synthetic value of the work are highlighted by a gram-scale test and a couple of downstream transformations. Preliminary mechanistic studies unveil a negative nonlinear effect for the catalytic process.
Collapse
Affiliation(s)
- Han-Yu Lu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Zi-Han Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Guo-Qiang Lin
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Zhi-Tao He
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China.
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Ningbo Zhongke Creation Center of New Materials, Ningbo, 315899, China
| |
Collapse
|
9
|
Qian HD, Li X, Yin T, Qian WF, Zhao C, Zhu C, Xu H. Remote copper-catalyzed enantioselective substitution of yne-thiophene carbonates. Sci China Chem 2024; 67:1175-1180. [DOI: 10.1007/s11426-023-1922-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/05/2024] [Indexed: 10/08/2024]
|
10
|
Li X, Qian HD, Qiao X, Zhao C, Lu Y, Zhu C, Xu H. Copper-catalyzed remote nucleophilic substitution of 5-ethynylthiophene esters. Org Chem Front 2024; 11:3962-3967. [DOI: 10.1039/d4qo00602j] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Here we demonstrate a strategy for the copper-catalyzed remote nucleophilic substitution of 5-ethynylthiophene esters at the η-position.
Collapse
Affiliation(s)
- Xiang Li
- CCNU-uOttawa Joint Research Centre, National Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Hao-Dong Qian
- CCNU-uOttawa Joint Research Centre, National Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xinying Qiao
- CCNU-uOttawa Joint Research Centre, National Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Chunhui Zhao
- CCNU-uOttawa Joint Research Centre, National Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yuepeng Lu
- CCNU-uOttawa Joint Research Centre, National Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Cuiju Zhu
- CCNU-uOttawa Joint Research Centre, National Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Hao Xu
- CCNU-uOttawa Joint Research Centre, National Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, College of Chemistry, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
11
|
Zhu H, Xu L, Zhu B, Liao M, Li J, Han Z, Sun J, Huang H. Copper-Catalyzed Enantioselective Formal [4 + 1] and [3 + 3] Cycloaddition of Ethynylethylene Carbonates. Org Lett 2023; 25:9213-9218. [PMID: 38100085 DOI: 10.1021/acs.orglett.3c03871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Herein we employed ethynylethylene carbonates (EECs) to achieve formal [4 + 1] and [3 + 3] cycloaddition with cyclic 1,3-dicarbonyl compounds. On one hand, EECs with styryl substitution could undergo a remotely controlled enantioselective [4 + 1] cycloaddition reaction. This reaction exhibits good chemoselectivity, regioselectivity, and enantioselectivity. In addition, a [3 + 3] cycloaddition reaction of EECs with cyclic 1,3-dicarbonyl compounds was also achieved, leading to a series of 4H-pyrans with impressive chemoselectivity and enantioselectivity.
Collapse
Affiliation(s)
- Haihui Zhu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Lixia Xu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Biao Zhu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Maoyan Liao
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jixing Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Zhengyu Han
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jianwei Sun
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR (China)
| | - Hai Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|