1
|
Li H, Liu X, Feng X, Guo X, Xu Z, Wang Y. Rapid assessment of acetophenone using an anti-interfering triple-emission Ln 3+-functionalized HOF@MOF sensor. Talanta 2024; 280:126718. [PMID: 39154436 DOI: 10.1016/j.talanta.2024.126718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
The development of high-performance sensors for rapidly detecting acetylacetone (AP) in water samples is necessary because its release into the environment can result in many vital problems for human health and environment. Herein, we first designed a hybrid by integrating HOF with ZIF-8 through a sequential growth strategy. By separately introducing blue-emitting SiQDs and green- and red-emitting Tb3+ and Eu3+ into ZIF-8 and HOF, the resultant ZIF-8@SiQDs@HOF@Eu3+@Tb3+ comprised three emission peaks at 484, 545 and 620 nm, all of which could be employed as switch-off responsive peaks to low concentrations of AP with a detection limit of 0.79 ppm. However, in environments with high concentrations of AP, a turn-on signal at 484 nm was observed. Thereupon, the ratiometric fluorescence intensity of the ternary emission varied within different concentration ranges, accompanied by the fluorescence color evolution from red to salmon to plum to purple to final blue. Moreover, a portable sensing film was fabricated for rapid warning, sensitive and visual determination of AP in complicated environments. Therefore, this triple-emission sensor with wide color variations and strong anti-interference advantages could promote further research to improve the selectivity, sensitivity and inherent self-correction of multimodal fluorescence detection and the ease of sensing operation.
Collapse
Affiliation(s)
- Huijun Li
- Department of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China.
| | - Xiang Liu
- Department of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Xiaoqin Feng
- Department of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Xiaoyuan Guo
- Department of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Zhouqing Xu
- Department of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China.
| | - Yan Wang
- State Collaborative Innovation Center of Coal Work Safety and Clean-efficiency Utilization, Henan Polytechnic University, Jiaozuo, 454000, China; Henan Provincial Research Center for Early Warning and Emergency Engineering of Combusstion and Explosion Power Disaster, Henan Polytechnic University, Jiaozuo, 454000, China.
| |
Collapse
|
2
|
Zhao X, Wang N, Liu K, Yao R, Guo Z, Zhao J, Liu Q. Enhancing Optical Properties of Zn-Mn Solid Solution Hybrid Halides for Wide Color Gamut Backlight Displays. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405137. [PMID: 39291916 DOI: 10.1002/smll.202405137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/29/2024] [Indexed: 09/19/2024]
Abstract
Hybrid metal halides display a range of optical properties and hold promise for various applications such as solid-state lighting, anti-counterfeiting measures, backlight displays, and X-ray detection. The incorporation of zinc into (C13H26N)2MnBr4 aims to enhance its structural rigidity and improve its narrow band green light emission properties. The resulting (C13H26N)2ZnBr4 compound exhibits an identical crystal structure to (C13H26N)2MnBr4, indicating the potential for a solid solution of varying Zn and Mn ratios within this structural framework. (C13H26N)2Zn0.2Mn0.8Br4 exhibits significantly enhanced properties, including a photoluminescence quantum yield of 92%, a minimum full width at half maximum of 43 nm, and 85% retention of room temperature emission at 420 K. Additionally, crystals of (C13H26N)2ZnCl4 and (C7H18N)2ZnX4 (X = Br, I) are synthesized, with (C7H18N)2ZnBr4 displaying luminescent color changes dependent on excitation. (C7H18N)2Zn0.2Mn0.8Br4 demonstrates reversible phase transitions and alterations in optical properties. A white light-emitting diode utilizing (C13H26N)2Zn0.2Mn0.8Br4 and commercial phosphors exhibited a color gamut of 112.2% of the National Television Standards Committee 1931 Standard. This investigation introduces a stable and highly efficient narrow-band green phosphor suitable for displays.
Collapse
Affiliation(s)
- Xianlong Zhao
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering and Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Na Wang
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering and Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Kunjie Liu
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering and Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Ruonan Yao
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering and Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhongnan Guo
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering and Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jing Zhao
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering and Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Quanlin Liu
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering and Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
3
|
Zhang W, Zheng W, Li L, Huang P, Xu J, Zhang W, Shao Z, Chen X. Unlocking the Potential of Organic-Inorganic Hybrid Manganese Halides for Advanced Optoelectronic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408777. [PMID: 39101296 DOI: 10.1002/adma.202408777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/20/2024] [Indexed: 08/06/2024]
Abstract
Organic-inorganic hybrid manganese(II) halides (OIMnHs) have garnered tremendous interest across a wide array of research fields owing to their outstanding optical properties, abundant structural diversity, low-cost solution processibility, and low toxicity, which make them extremely suitable for use as a new class of luminescent materials for various optoelectronic applications. Over the past years, a plethora of OIMnHs with different structural dimensionalities and multifunctionalities such as efficient photoluminescence (PL), radioluminescence, circularly polarized luminescence, and mechanoluminescence have been newly created by judicious screening of the organic cations and inorganic Mn(II) polyhedra. Specifically, through precise molecular and structural engineering, a series of OIMnHs with near-unity PL quantum yields, high anti-thermal quenching properties, and excellent stability in harsh conditions have been devised and explored for applications in light-emitting diodes (LEDs), X-ray scintillators, multimodal anti-counterfeiting, and fluorescent sensing. In this review, the latest advancements in the development of OIMnHs as efficient light-emitting materials are summarized, which covers from their fundamental physicochemical properties to advanced optoelectronic applications, with an emphasis on the structural and functionality design especially for LEDs and X-ray detection and imaging. Current challenges and future efforts to unlock the potentials of these promising materials are also envisioned.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Structural Chemistry, Fujian Key Laboratory of Nanomaterials, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Key Laboratory of Advanced Materials Technologies and International (Hongkong, Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Wei Zheng
- State Key Laboratory of Structural Chemistry, Fujian Key Laboratory of Nanomaterials, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Lingyun Li
- Key Laboratory of Advanced Materials Technologies and International (Hongkong, Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Ping Huang
- State Key Laboratory of Structural Chemistry, Fujian Key Laboratory of Nanomaterials, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Jin Xu
- State Key Laboratory of Structural Chemistry, Fujian Key Laboratory of Nanomaterials, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Wen Zhang
- State Key Laboratory of Structural Chemistry, Fujian Key Laboratory of Nanomaterials, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Zhiqing Shao
- State Key Laboratory of Structural Chemistry, Fujian Key Laboratory of Nanomaterials, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Xueyuan Chen
- State Key Laboratory of Structural Chemistry, Fujian Key Laboratory of Nanomaterials, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| |
Collapse
|
4
|
Sun H, Yang X, Li P, Bai Y, Meng Q, Zhao H, Wang Q, Wen Z, Huang L, Huang D, Yu WW, Chen H, Liu F. Solution Synthesis and Light-Emitting Applications of One-Dimensional Lead-Free Cerium(III) Metal Halides. NANO LETTERS 2024; 24:10355-10361. [PMID: 39119944 DOI: 10.1021/acs.nanolett.4c03019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Combining rare earth elements with the halide perovskite structure offers valuable insights into designing nonlead (Pb) luminescent materials. However, most of these compositions tend to form zero-dimensional (0D) networks of metal-halide polyhedra, with higher-dimensional (1D, 2D, and 3D) structures receiving relatively less exploration. Herein, we present synthesis and optical properties of Cs3CeCl6·3H2O, characterized by its unique 1D crystal structure. The conduction band minimum of Cs3CeCl6·3H2O becomes less localized as a result of the increased structural dimension, making it possible for the materials to achieve an efficient electrical injection. For both Cs3CeCl6·3H2O single crystals and nanocrystals, we also observed remarkable luminescence with near-unity photoluminescence quantum yield and exceptional phase stability. Cs3CeCl6·3H2O single crystals demonstrate an X-ray scintillation light yield of 31900 photons/MeV, higher than that of commercial LuAG:Ce (22000 photons/MeV); electrically driven light-emitting diodes fabricated with Cs3CeCl6·3H2O nanocrystals yield the characteristic emission of Ce3+, indicating their potential use in next-generation violet-light-emitting devices.
Collapse
Affiliation(s)
- Haibo Sun
- Province-Ministry Co-construction Collaborative Innovation Center of Hebei Photovoltaic Technology, National-Local Joint Engineering Laboratory of New Energy Photoelectric Devices, Hebei Key Laboratory of Photo-Electricity Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, People's Republic of China
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, People's Republic of China
| | - Xinyu Yang
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, People's Republic of China
| | - Peilin Li
- SDU-ANU Joint Science College, Shandong University, Weihai 264209, People's Republic of China
| | - Yunfei Bai
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, People's Republic of China
| | - Qichao Meng
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, People's Republic of China
| | - Hongyuan Zhao
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, People's Republic of China
| | - Qiujie Wang
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, People's Republic of China
| | - Ziying Wen
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, People's Republic of China
| | - Li Huang
- Laoshan Laboratory, Qingdao 266071, People's Republic of China
| | - Dan Huang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Physical Science and Technology, Guangxi University, Nanning 530004, People's Republic of China
| | - William W Yu
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong Key Laboratory of Advanced Organosilicon Materials and Technologies, Shandong University, Jinan 250100, People's Republic of China
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Shandong University, Qingdao 266237, People's Republic of China
| | - Haibin Chen
- Province-Ministry Co-construction Collaborative Innovation Center of Hebei Photovoltaic Technology, National-Local Joint Engineering Laboratory of New Energy Photoelectric Devices, Hebei Key Laboratory of Photo-Electricity Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, People's Republic of China
| | - Feng Liu
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, People's Republic of China
| |
Collapse
|
5
|
Tang W, Xing G, Xu X, Chen B. Emerging Hybrid Metal Halide Glasses for Sensing and Displays. SENSORS (BASEL, SWITZERLAND) 2024; 24:5258. [PMID: 39204954 PMCID: PMC11360173 DOI: 10.3390/s24165258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Glassy hybrid metal halides have emerged as promising materials in recent years due to their high structural adjustability and low melting points, offering unique merits that overcome the limitations of their crystalline and polycrystalline counterparts as well as other conventional amorphous semiconductors. This review article comprehensively explores the structural characteristics, electronic properties, and chemical coordination of hybrid metal halides, emphasizing their role in the glass transition from the crystalline phase to the amorphous phase. We examine the intrinsic disorder within the amorphous phase that facilitates light transmission and discuss recent advances in device architecture and interface engineering by optimizing the charge transport of glassy hybrid metal halides for high-quality applications. With full theoretical understanding and rational structural design, potential applications in displays, information storage, X-ray imaging, and sensing are highlighted, underscoring the transformative impact of glassy hybrid metal halides in the fields of materials science and information science.
Collapse
Affiliation(s)
- Wei Tang
- College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Guansheng Xing
- School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Xiuwen Xu
- College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Bing Chen
- College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|
6
|
Song T, Wang CQ, Lu H, Mu XJ, Wang BL, Liu JZ, Ma B, Cao J, Sheng CX, Long G, Wang Q, Zhang HL. Achieving Strong Circularly Polarized Luminescence through Cascade Cationic Insertion in Lead-free Hybrid Metal Halides. Angew Chem Int Ed Engl 2024; 63:e202400769. [PMID: 38544401 DOI: 10.1002/anie.202400769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Indexed: 04/23/2024]
Abstract
Generating circularly polarized luminescence (CPL) with simultaneous high photoluminescence quantum yield (PLQY) and dissymmetry factor (glum) is difficult due to usually unmatched electric transition dipole moment (μ) and magnetic transition dipole moment (m) of materials. Herein we tackle this issue by playing a "cascade cationic insertion" trick to achieve strong CPL (with PLQY of ~100 %) in lead-free metal halides with high glum values reaching -2.3×10-2 without using any chiral inducers. Achiral solvents of hydrochloric acid (HCl) and N, N-dimethylformamide (DMF) infiltrate the crystal lattice via asymmetric hydrogen bonding, distorting the perovskite structure to induce the "intrinsic" chirality. Surprisingly, additional insertion of Cs+ cation to substitute partial (CH3)2NH2 + transforms the chiral space group to achiral but the crystal maintains chiroptical activity. Further doping of Sb3+ stimulates strong photoluminescence as a result of self-trapped excitons (STEs) formation without disturbing the crystal framework. The chiral perovskites of indium-antimony chlorides embedded on LEDs chips demonstrate promising potential as CPL emitters. Our work presents rare cases of chiroptical activity of highly luminescent perovskites from only achiral building blocks via spontaneous resolution as a result of symmetry breaking.
Collapse
Affiliation(s)
- Tao Song
- Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Cheng-Qiang Wang
- Key Laboratory of Photovoltaic Science and Technology, Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Haolin Lu
- Tianjin Key Lab for Rare Earth Materials and Applications, Renewable Energy Conversion and Storage Center, Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Xi-Jiao Mu
- Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Bo-Long Wang
- Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Ji-Zhong Liu
- Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Bo Ma
- Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Jing Cao
- Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Chuan-Xiang Sheng
- Key Laboratory of Photovoltaic Science and Technology, Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Guankui Long
- Tianjin Key Lab for Rare Earth Materials and Applications, Renewable Energy Conversion and Storage Center, Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Qiang Wang
- Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Hao-Li Zhang
- Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
7
|
Zhang Z, Jin J, Lin Y, Xu H, Cheng J, Zeng H, Lin Z, Xia Z, Zou G. Multisite Fine-Tuning in Hybrid Cadmium Halides Enables Wide Range Emissions for Anti-Counterfeiting. Angew Chem Int Ed Engl 2024; 63:e202400760. [PMID: 38348737 DOI: 10.1002/anie.202400760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Indexed: 03/01/2024]
Abstract
Achieving tunable emissions spanning the spectrum, from blue to near-infrared (NIR) light, within a single component is a formidable challenge with significant implication, particularly in tailoring multicolor luminescence for anti-counterfeiting purposes. In this study, we demonstrate a broad spectrum of emissions, covering blue to red and extending into NIR light in [BPy]2CdX4 : xSb3+ (BPy=Butylpyridinium; X=Cl, Br; x=0 to 0.08) through precise multisite structural fine-tuning. Notably, the multicolor emissions from [BPy]2CdBr4 : Sb3+ manifest a distinctive pattern, transitioning from blue to yellow in tandem with the host [BPy]2CdBr4 and further extending from yellow to NIR with its homologous [BPy]2CdCl4 : Sb3+, resulting in the simultaneous presence of intersecting and independent emission colors. Detailed modulation of chemical composition enables partial luminescence switching, facilitating the creation of diverse patterns with multicolor luminescence by employing [BPy]2CdX4 : xSb3+ as phosphors. This study for the first time successfully implements several groups of tunable emission colors in a single matrix via multisite fine-tuning. Such an effective strategy not only develops the specific relationships between tunable emissions and adjustable compositions, but also introduces a cost-effective and straightforward approach to achieving unique, high-level, plentiful-color and multiple-information-storage labels for advanced anti-counterfeiting applications.
Collapse
Affiliation(s)
- Zhizhuan Zhang
- College of Chemistry, Sichuan University, Chengdu, 610065, P. R. China
| | - Jiance Jin
- The State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Yangpeng Lin
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Haiping Xu
- College of Chemistry, Sichuan University, Chengdu, 610065, P. R. China
| | - Juan Cheng
- College of Chemistry, Sichuan University, Chengdu, 610065, P. R. China
| | - Hongmei Zeng
- College of Chemistry, Sichuan University, Chengdu, 610065, P. R. China
| | - Zhien Lin
- College of Chemistry, Sichuan University, Chengdu, 610065, P. R. China
| | - Zhiguo Xia
- The State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Guohong Zou
- College of Chemistry, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|