1
|
Cai Y, Yan S, Du X, Lin T, Lin Y, Qiu L, Wang W. Reversible Asymmetric Deformation Modulating Dexter Energy Transfer in Manganese Halide Perovskite with Temperature-pressure Equivalence Effect. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409528. [PMID: 39690844 DOI: 10.1002/smll.202409528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/05/2024] [Indexed: 12/19/2024]
Abstract
Deformation of metal halide perovskite can induce many interesting properties. This study focuses on a manganese-based organic-inorganic perovskite with a unique structure in which tetrahedral and octahedral coordination coexist in single crystal unit cell. This perovskite emits at 519 and 615 nm at room temperature. In contrast to conventional perovskites, this perovskite regulates the Dexter energy transfer between the two coordination modes through asymmetric deformation without phase transition, producing a reversible and tunable photoluminescence. Notably, under atmospheric pressure, as temperature increases from liquid nitrogen temperature to 135 °C, the luminescence color shifts progressively from red with a CIE coordinate of (0.59, 0.27) to yellow green with a CIE coordinate of (0.33, 0.56), with excellent reversibility. Additionally, at room temperature, the luminescence color shifts progressively from orange with a CIE coordinate of (0.54, 0.42) to red with a CIE coordinate of (0.61, 0.27) as pressure increases from 1 atm to 7.5 GPa. This novel tetrahedral and octahedral coexisting perovskite has a temperature-pressure equivalence effect in modulating luminescent color changes. It tunes emission by forming asymmetric deformations through the contraction (or expansion) of tetrahedra and expansion (or contraction) of octahedra upon stimulation, providing a new pathway to tune the emission of perovskites.
Collapse
Affiliation(s)
- Yangyang Cai
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
| | - Siyu Yan
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
| | - Xinran Du
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
| | - Tingting Lin
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, Singapore, 138634, Singapore
| | - Yuejian Lin
- Advanced Materials Laboratory, Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Longzhen Qiu
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Weizhi Wang
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
2
|
Liu Y, Ma Z, Zhang J, He Y, Dai J, Li X, Shi Z, Manna L. Light-Emitting Diodes Based on Metal Halide Perovskite and Perovskite Related Nanocrystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2415606. [PMID: 39887795 DOI: 10.1002/adma.202415606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/18/2024] [Indexed: 02/01/2025]
Abstract
Light-emitting diodes (LEDs) based on halide perovskite nanocrystals have attracted extensive attention due to their considerable luminescence efficiency, wide color gamut, high color purity, and facile material synthesis. Since the first demonstration of LEDs based on MAPbBr3 nanocrystals was reported in 2014, the community has witnessed a rapid development in their performances. In this review, a historical perspective of the development of LEDs based on halide perovskite nanocrystals is provided and then a comprehensive survey of current strategies for high-efficiency lead-based perovskite nanocrystals LEDs, including synthesis optimization, ion doping/alloying, and shell coating is presented. Then the basic characteristics and emission mechanisms of lead-free perovskite and perovskite-related nanocrystals emitters in environmentally friendly LEDs, from the standpoint of different emission colors are reviewed. Finally, the progress in LED applications is covered and an outlook of the opportunities and challenges for future developments in this field is provided.
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450052, China
| | - Zhuangzhuang Ma
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450052, China
| | - Jibin Zhang
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450052, China
| | - Yanni He
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jinfei Dai
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, China
| | - Xinjian Li
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450052, China
| | - Zhifeng Shi
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450052, China
| | - Liberato Manna
- Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| |
Collapse
|
3
|
Fu R, Gao J, Wang L, Xiao B, Hu T, Wang G, Zeng Q, Xiao G. Structure Evolution and Optical Tuning of One-Dimensional Post-perovskite (TDMP)PbBr 4 under High Pressure. Inorg Chem 2024; 63:18276-18284. [PMID: 39295474 DOI: 10.1021/acs.inorgchem.4c03145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Optimizing the structure and tuning the optical properties in low-dimensional organic-inorganic halide perovskites are crucial to practical applications for stable solid-state lighting. Herein, we performed high-pressure investigations on one-dimensional (1D) postperovskite (TDMP)PbBr4 (TDMP = trans-2,5-dimethylpiperaziniium), and structure and optical properties under pressure are studied. (TDMP)PbBr4 exhibits color tunable emission from cool white light to yellow orange as the pressure increases from atmospheric pressure to 20.0 GPa. It was found that high pressure would facilitate trapping the free exciton (free exciton) to form a self-trapped exciton (STE) state due to increased electron-phonon interaction, thus enhancing STE emission in the pressure range of 4.0-7.0 GPa. At above 7.0 GPa, the STE emission is quenched, which is due to the phonon-assisted nonradiative relaxation. Meanwhile, (TDMP)PbBr4 displays reversible piezochromism from colorless to yellow under pressure as a result of the compound undergoing a reversible structural transformation. This work provides an insightful perspective on revealing the relationship between structure and optical properties of 1D postperovskites under high pressure.
Collapse
Affiliation(s)
- Ruijing Fu
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, P. R. China
- Institute of Carbon Peaking and Carbon Neutralization, Wuyi University, Jiangmen 529020, P. R. China
| | - Junpeng Gao
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, P. R. China
| | - Lingrui Wang
- Key Laboratory of Materials Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Bin Xiao
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, P. R. China
| | - Tao Hu
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, P. R. China
- Institute of Carbon Peaking and Carbon Neutralization, Wuyi University, Jiangmen 529020, P. R. China
| | - Guangxia Wang
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, P. R. China
| | - Qingguang Zeng
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, P. R. China
- Institute of Carbon Peaking and Carbon Neutralization, Wuyi University, Jiangmen 529020, P. R. China
| | - Guanjun Xiao
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| |
Collapse
|
4
|
Hu H, Niu G, Jiang J, Wang X, Liu X, Che L, Sui L, Zeng X, Wu G, Yuan K, Yang X. Pressure-Induced Changes in the Phase Distribution and Carrier Dynamics of Quasi-Two-Dimensional Ruddlesden-Popper Perovskites. J Phys Chem Lett 2024; 15:8142-8150. [PMID: 39092613 DOI: 10.1021/acs.jpclett.4c01879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Quasi-two-dimensional (quasi-2D) perovskites hold significant potential for diverse design strategies due to their tunable structures, exceptional optical properties, and environmental stability. Due to the complexity of the structure and carrier dynamics, characterization methods such as photoluminescence and absorption spectroscopy can observe but cannot precisely distinguish or identify the phase distribution within quasi-2D perovskite films or correlate phases with carrier dynamics. In this study, we used pressure to modulate the intralayer and interlayer structures of (PEA)2Csn-1PbnBr3n+1 quasi-2D perovskite films, investigating charge carrier dynamics. Steady-state spectroscopy revealed phase transitions at 1.62, 3, and 8 GPa, with free excitons transforming into self-trapped excitons after 8 GPa. Transient absorption spectroscopy elucidated the structural evolution, energy transfer, and pressure-induced transition mechanisms. The results demonstrate that combining pressure and spectroscopy enables the precise identification of phase distribution and pressure response ranges and reveals photophysical mechanisms, providing new insights for optimizing optoelectronic materials.
Collapse
Affiliation(s)
- Haiyang Hu
- Department of Physics, School of Science, Dalian Maritime University, Dalian 116026, P. R. China
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Guangming Niu
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
- Marine Engineering College, Dalian Maritime University, Dalian 116026, P. R. China
| | - Jutao Jiang
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100039, P. R. China
| | - Xiaowei Wang
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100039, P. R. China
| | - Xin Liu
- Department of Physics, School of Science, Dalian Maritime University, Dalian 116026, P. R. China
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Li Che
- Department of Physics, School of Science, Dalian Maritime University, Dalian 116026, P. R. China
| | - Laizhi Sui
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100039, P. R. China
| | - Xiangyu Zeng
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Guorong Wu
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Kaijun Yuan
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100039, P. R. China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| |
Collapse
|