1
|
Matsumura Y, Sugihara M, Tan SE, Sato T, Hayashi K, Nishiyama H, Zhou WM, Inagi S, Tomita I. Synthesis of Stannole-Containing π-Conjugated Polymers by Post-Element Transformation of Organotitanium Polymer. Macromol Rapid Commun 2019; 40:e1800929. [PMID: 31150134 DOI: 10.1002/marc.201800929] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 05/09/2019] [Indexed: 11/06/2022]
Abstract
The synthesis of stannole-2,5-diyl-containing π-conjugated polymers by the post-element transformation of a regioregular organotitanium polymer is described. For example, a 1,1-diphenylstannole-containing polymer is obtained in 83% yield by the reaction of a regioregular organotitanium polymer, which is prepared from 1,4-bis(2-ethylhexyloxy)-2,5-diethynylbenzene and a low-valent titanium complex with diphenyltin dichloride at -50 °C to ambient temperature. The number-average molecular weight and molecular weight distribution (Mn and Mw /Mn ) of the stannole-containing polymer are estimated as 4800 and 1.8, respectively. The obtained polymer is found to have the extended π-conjugated backbone and relatively low-lying lowest unoccupied molecular orbital (LUMO) energy level (-3.12 eV), which is supported by its UV-vis absorption spectrum and cyclic voltammetric (CV) analysis. In addition, the stannole-containing polymer is found to be applicable to a chemosensor for fluoride anion where the color and photoluminescence intensity of the polymer solution exhibits a distinct change in the presence of a fluoride anion.
Collapse
Affiliation(s)
- Yoshimasa Matsumura
- Department of Chemical Science and Engineering, Graduate School of Materials and Chemical Technology Tokyo Institute of Technology, Nagatsuta-cho 4259-G1-9, Midori-ku, Yokohama, 226-8502, Japan
| | - Masato Sugihara
- Department of Chemical Science and Engineering, Graduate School of Materials and Chemical Technology Tokyo Institute of Technology, Nagatsuta-cho 4259-G1-9, Midori-ku, Yokohama, 226-8502, Japan
| | - Sia-Er Tan
- Department of Chemical Science and Engineering, Graduate School of Materials and Chemical Technology Tokyo Institute of Technology, Nagatsuta-cho 4259-G1-9, Midori-ku, Yokohama, 226-8502, Japan
| | - Tatsuhiko Sato
- Department of Chemical Science and Engineering, Graduate School of Materials and Chemical Technology Tokyo Institute of Technology, Nagatsuta-cho 4259-G1-9, Midori-ku, Yokohama, 226-8502, Japan
| | - Kohei Hayashi
- Department of Chemical Science and Engineering, Graduate School of Materials and Chemical Technology Tokyo Institute of Technology, Nagatsuta-cho 4259-G1-9, Midori-ku, Yokohama, 226-8502, Japan
| | - Hiroki Nishiyama
- Department of Chemical Science and Engineering, Graduate School of Materials and Chemical Technology Tokyo Institute of Technology, Nagatsuta-cho 4259-G1-9, Midori-ku, Yokohama, 226-8502, Japan
| | - Wei-Min Zhou
- Department of Chemical Science and Engineering, Graduate School of Materials and Chemical Technology Tokyo Institute of Technology, Nagatsuta-cho 4259-G1-9, Midori-ku, Yokohama, 226-8502, Japan
| | - Shinsuke Inagi
- Department of Chemical Science and Engineering, Graduate School of Materials and Chemical Technology Tokyo Institute of Technology, Nagatsuta-cho 4259-G1-9, Midori-ku, Yokohama, 226-8502, Japan
| | - Ikuyoshi Tomita
- Department of Chemical Science and Engineering, Graduate School of Materials and Chemical Technology Tokyo Institute of Technology, Nagatsuta-cho 4259-G1-9, Midori-ku, Yokohama, 226-8502, Japan
| |
Collapse
|
2
|
Mohammadi Ziarani G, Rohani S, Ziarati A, Badiei A. Applications of SBA-15 supported Pd metal catalysts as nanoreactors in C-C coupling reactions. RSC Adv 2018; 8:41048-41100. [PMID: 35557901 PMCID: PMC9091621 DOI: 10.1039/c8ra09038f] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/28/2018] [Indexed: 11/22/2022] Open
Abstract
Nanoreactors are material structures with engineered internal cavities which create exclusive confined nanoscale surroundings for chemical reactions. The cavities of mesoporous silica SBA-15 can be used as nanoreactors for incorporating catalytic species such as metal nanoparticles, complexes etc. Since SBA-15 silica has a neutral framework, organic functional groups and heteroatoms have been embedded by direct or post-synthesis approaches in order to modify their functionality. Palladium is the most used transition metal for C-C bond formations. Because of the great importance of C-C coupling reactions, this review article aims at providing a deep insight into the state of art in the field of the synthesis and the application of mesoporous SBA-15 silica-supported Pd catalysts in C-C coupling transformations. In most cases, synthesis and modification of the catalyst, time and yield of reactions, recyclability and leaching of the Pd species from the SBA-15 support are discussed to reveal the role of SBA-15 in C-C coupling reactions.
Collapse
Affiliation(s)
- Ghodsi Mohammadi Ziarani
- Department of Chemistry, Faculty of Science, University of Alzahra Tehran Iran +98 21 8041575 +98 218041575
| | - Sahar Rohani
- Department of Chemistry, Faculty of Science, University of Alzahra Tehran Iran +98 21 8041575 +98 218041575
| | - Abolfazl Ziarati
- School of Chemistry, College of Science, University of Tehran Tehran Iran
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran Tehran Iran
| |
Collapse
|
3
|
Singh G, Singh J, Mangat SS, Arora A. Synthetic approach towards ‘click’ modified chalcone based organotriethoxysilanes; UV-Vis study. RSC Adv 2014. [DOI: 10.1039/c4ra08724k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The efficient linkage of a conjugate chalcone to n-propyltriethoxysilanes via a 1,2,3-triazole is reported. The synthesis involves a Claisen–Schmidt condensation followed by a copper(i) catalyzed azide–alkyne cycloaddition (CuAAC) reaction.
Collapse
Affiliation(s)
- Gurjaspreet Singh
- Department of Chemistry and Centre of Advanced Studies
- Panjab University
- Chandigarh, India
| | - Jandeep Singh
- Department of Chemistry and Centre of Advanced Studies
- Panjab University
- Chandigarh, India
| | | | - Aanchal Arora
- Department of Chemistry and Centre of Advanced Studies
- Panjab University
- Chandigarh, India
| |
Collapse
|