1
|
El-Lateef HMA, El-Dabea T, Khalaf MM, Abu-Dief AM. Development of Metal Complexes for Treatment of Coronaviruses. Int J Mol Sci 2022; 23:6418. [PMID: 35742870 PMCID: PMC9223400 DOI: 10.3390/ijms23126418] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/29/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Coronavirus disease (SARS-CoV-2) is a global epidemic. This pandemic, which has been linked to high rates of death, has forced some countries throughout the world to implement complete lockdowns in order to contain the spread of infection. Because of the advent of new coronavirus variants, it is critical to find effective treatments and vaccines to prevent the virus's rapid spread over the world. In this regard, metal complexes have attained immense interest as antibody modifiers and antiviral therapies, and they have a lot of promise towards SARS-CoV-2 and their suggested mechanisms of action are discussed, i.e., a new series of metal complexes' medicinal vital role in treatment of specific proteins or SARS-CoV-2 are described. The structures of the obtained metal complexes were fully elucidated by different analytical and spectroscopic techniques also. Molecular docking and pharmacophore studies presented that most of complexes studied influenced good binding affinity to the main protease SARS-CoV-2, which also was attained as from the RCSB pdb (Protein Data Bank) data PDB ID: 6 W41, to expect the action of metal complexes in contradiction of COVID-19. Experimental research is required to determine the pharmacokinetics of most of the complexes analyzed for the treatment of SARS-CoV-2-related disease. Finally, the toxicity of a metal-containing inorganic complex will thus be discussed by its capability to transfer metals which may bind with targeted site.
Collapse
Affiliation(s)
- Hany M. Abd El-Lateef
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia;
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82534, Egypt;
| | - Tarek El-Dabea
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82534, Egypt;
| | - Mai M. Khalaf
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia;
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82534, Egypt;
| | - Ahmed M. Abu-Dief
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82534, Egypt;
- Chemistry Department, College of Science, Taibah University, Madinah 344, Saudi Arabia
| |
Collapse
|
2
|
El‐Bindary MA, El‐Bindary AA. Synthesis, characterization, DNA binding, and biological action of dimedone arylhydrazone chelates. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6576] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mohamed A. El‐Bindary
- Basic Science Department Higher Institute of Engineering and Technology Damietta Egypt
| | | |
Collapse
|
3
|
El-Gammal OA, El-Bindary AA, Sh. Mohamed F, Rezk GN, El-Bindary MA. Synthesis, characterization, design, molecular docking, anti COVID-19 activity, DFT calculations of novel Schiff base with some transition metal complexes. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117850] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
4
|
Al‐Hazmi GA, Abou‐Melha KS, Althagafi I, El‐Metwaly N, Shaaban F, Abdul Galil MS, El‐Bindary AA. Synthesis and structural characterization of oxovanadium(IV) complexes of dimedone derivatives. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5672] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Gamil A.A. Al‐Hazmi
- Department of Chemistry, Faculty of Science King Khalid University P.O. Box 9004 Abha Saudi Arabia
- Department of Chemistry, Faculty of Applied Sciences University of Taiz P.O. Box 82 Taiz Yemen
| | - Khlood S. Abou‐Melha
- Department of Chemistry, Faculty of Science King Khalid University P.O. Box 9004 Abha Saudi Arabia
| | - Ismail Althagafi
- Department of Chemistry, Faculty of Applied Science University of Umm‐Al‐Qura Makkah Saudi Arabia
| | - NashwaM. El‐Metwaly
- Department of Chemistry, Faculty of Applied Science University of Umm‐Al‐Qura Makkah Saudi Arabia
- Department of Chemistry, Faculty of Science University of Mansoura Mansoura Egypt
| | - Fathy Shaaban
- Department of Environment and Health Research, Custodian of the Two Holy Mosques Institute for Hajj and Umrah Research UmmAl‐Qura University Makkah Saudi Arabia
| | - Mansour S. Abdul Galil
- Department of Chemistry, Faculty of Applied Sciences University of Taiz P.O. Box 82 Taiz Yemen
| | - Ashraf A. El‐Bindary
- Department of Chemistry, Faculty of Sciences University of Damietta Damietta 34517 Egypt
| |
Collapse
|
6
|
Zhu M, Jia Z, Qu Y, Qi Z, Zhao H, Wang N, Xing J, Liu J, Gao E. Four Ni(II), Co(III), Cd(II) complexes based on 5-(pyrazol-1-yl)nicotinic acid: synthesis, X-ray single crystal structure, in vitro cytotoxicity, apoptosis and molecular docking studies. J COORD CHEM 2019. [DOI: 10.1080/00958972.2018.1564911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Mingchang Zhu
- International Key Laboratory of Liaoning Inorganic Molecule-Based Chemical and Department of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang, China
| | - Zhili Jia
- International Key Laboratory of Liaoning Inorganic Molecule-Based Chemical and Department of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang, China
| | - Yun Qu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhenzhen Qi
- International Key Laboratory of Liaoning Inorganic Molecule-Based Chemical and Department of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang, China
| | - Hongwei Zhao
- International Key Laboratory of Liaoning Inorganic Molecule-Based Chemical and Department of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang, China
| | - Ning Wang
- International Key Laboratory of Liaoning Inorganic Molecule-Based Chemical and Department of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang, China
| | - Jialing Xing
- International Key Laboratory of Liaoning Inorganic Molecule-Based Chemical and Department of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang, China
| | - Jiaxing Liu
- International Key Laboratory of Liaoning Inorganic Molecule-Based Chemical and Department of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang, China
| | - Enjun Gao
- International Key Laboratory of Liaoning Inorganic Molecule-Based Chemical and Department of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang, China
| |
Collapse
|
7
|
Majumder I, Chakraborty P, Álvarez R, Gonzalez-Diaz M, Peláez R, Ellahioui Y, Bauza A, Frontera A, Zangrando E, Gómez-Ruiz S, Das D. Bioactive Heterometallic Cu II-Zn II Complexes with Potential Biomedical Applications. ACS OMEGA 2018; 3:13343-13353. [PMID: 30411036 PMCID: PMC6217631 DOI: 10.1021/acsomega.8b01260] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/03/2018] [Indexed: 05/09/2023]
Abstract
A series of multinuclear heterometallic Cu-Zn complexes of molecular formula [(CuL)2Zn(dca)2] (1), [(CuL)2Zn(NO3)2] (2), [(CuL)2Zn2(Cl)4] (3), and [(CuL)2Zn2(NO2)4] (4) have been synthesized by reacting [CuL] as a "metalloligand (ML)" (where HL = N,N'-bis(5-chloro-2-hydroxybenzylidene)-2,2-dimethylpropane-1,3-diamine) and by varying the anions or coligands using the same molar ratios of the reactants. All of the four products including the ML have been characterized by infrared and UV-vis spectroscopies and elemental and single-crystal X-ray diffraction analyses. By varying the anions, different structures and topologies are obtained which we have tried to rationalize by means of thorough density functional theory calculations. All of the complexes (1-4) have now been applied for several biological investigations to verify their therapeutic worth. First, their cytotoxicity properties were assessed against HeLa human cervical carcinoma along with the determination of IC50 values. The study was extended with extensive DNA and protein binding experiments followed by detailed fluorescence quenching study with suitable reagents to comprehend the mechanistic pathway. From all of these biological studies, it has been found that all of these heterometallic complexes show more than a few fold improvement of their therapeutic values as compared to the similar homometallic ones probably because of the simultaneous synergic effect of copper and zinc. Among all of the four heterometallic complexes, complex 3 exhibits highest binding constants and IC50 values suggest for their better interaction toward the biological targets and hence have better clinical importance.
Collapse
Affiliation(s)
- Ishani Majumder
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Prateeti Chakraborty
- Department of Chemistry, Bangabasi College, 19, Rajkumar Chakraborty Sarani, Kolkata 700009, India
| | - Raquel Álvarez
- Department of Pharmaceutical Sciences, CIETUS and IBSAL, Faculty of Pharmacy, University of Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain
| | - Myriam Gonzalez-Diaz
- Department of Pharmaceutical Sciences, CIETUS and IBSAL, Faculty of Pharmacy, University of Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain
| | - Rafael Peláez
- Department of Pharmaceutical Sciences, CIETUS and IBSAL, Faculty of Pharmacy, University of Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain
| | - Younes Ellahioui
- Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| | - Antonio Bauza
- Departament de Química, Universitat de les Illes Balears, Crta. De Valldemossa km 7.5, 07122 Palma, Baleares, Spain
| | - Antonio Frontera
- Departament de Química, Universitat de les Illes Balears, Crta. De Valldemossa km 7.5, 07122 Palma, Baleares, Spain
| | - Ennio Zangrando
- Dipartimento di Scienze Chimiche, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Santiago Gómez-Ruiz
- Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| | - Debasis Das
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| |
Collapse
|
8
|
Eskandari A, Kundu A, Lu C, Ghosh S, Suntharalingam K. Synthesis, characterization, and cytotoxic properties of mono- and di-nuclear cobalt(ii)-polypyridyl complexes. Dalton Trans 2018; 47:5755-5763. [DOI: 10.1039/c8dt00577j] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We report the synthesis and characterisation of mono- and di-nuclear cobalt(ii) complexes (1–3) containing L1, a polypyridyl ligand with pyrazole moieties.
Collapse
Affiliation(s)
| | | | - Chunxin Lu
- Guangxi Colleges and Universities Key Laboratory of Beibu Gulf Oil and Natural Gas Resource Effective Utilization
- Qinzhou University
- Qinzhou 535011
- China
| | | | | |
Collapse
|