1
|
Pandey P, Ramniwas S, Pandey S, Lakhanpal S, Padmapriya G, Mishra S, Kaur M, Ashraf A, Kumar MR, Khan F. Review to Elucidate the Correlation between Cuproptosis-Related Genes and Immune Infiltration for Enhancing the Detection and Treatment of Cervical Cancer. Int J Mol Sci 2024; 25:10604. [PMID: 39408933 PMCID: PMC11477161 DOI: 10.3390/ijms251910604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Copper is a vital trace element in oxidized and reduced forms. It plays crucial roles in numerous biological events such as redox chemistry, enzymatic reactions, mitochondrial respiration, iron metabolism, autophagy, and immune modulation. Maintaining the balance of copper in the body is essential because its deficiency and excess can be harmful. Abnormal copper metabolism has a two-fold impact on the development of tumors and cancer treatment. Cuproptosis is a form of cell death that occurs when there is excessive copper in the body, leading to proteotoxic stress and the activation of a specific pathway in the mitochondria. Research has been conducted on the advantageous role of copper ionophores and chelators in cancer management. This review presents recent progress in understanding copper metabolism, cuproptosis, and the molecular mechanisms involved in using copper for targeted therapy in cervical cancer. Integrating trace metals and minerals into nanoparticulate systems is a promising approach for controlling invasive tumors. Therefore, we have also included a concise overview of copper nanoformulations targeting cervical cancer cells. This review offers comprehensive insights into the correlation between cuproptosis-related genes and immune infiltration, as well as the prognosis of cervical cancer. These findings can be valuable for developing advanced clinical tools to enhance the detection and treatment of cervical cancer.
Collapse
Affiliation(s)
- Pratibha Pandey
- Post Doctoral Department, Eudoxia Research University, New Castle, DE 19808, USA;
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, India
| | - Seema Ramniwas
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali 140413, India;
| | - Shivam Pandey
- School of Applied and Life Sciences, Uttaranchal University, Dehradun 248007, India;
| | - Sorabh Lakhanpal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India;
| | - G. Padmapriya
- Department of Chemistry and Biochemistry, School of Sciences, JAIN Deemed to be University, Bangalore 560069, India;
| | - Shivang Mishra
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur 303121, India;
| | - Mandeep Kaur
- Department of Sciences, Vivekananda Global University, Jaipur 303012, India;
| | - Ayash Ashraf
- Chandigarh Pharmacy College, Chandigarh Group of College, Jhanjeri, Mohali 140307, India;
| | - M Ravi Kumar
- Department of Chemistry, Raghu Engineering College, Visakhapatnam 531162, India;
| | - Fahad Khan
- Center for Global Health Research Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India
| |
Collapse
|
2
|
Alfonso‐Herrera LA, Rosete‐Luna S, Hernández‐Romero D, Rivera‐Villanueva JM, Olivares‐Romero JL, Cruz‐Navarro JA, Soto‐Contreras A, Arenaza‐Corona A, Morales‐Morales D, Colorado‐Peralta R. Transition Metal Complexes with Tridentate Schiff Bases (O N O and O N N) Derived from Salicylaldehyde: An Analysis of Their Potential Anticancer Activity. ChemMedChem 2022; 17:e202200367. [PMID: 36068174 PMCID: PMC9826236 DOI: 10.1002/cmdc.202200367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/05/2022] [Indexed: 01/11/2023]
Abstract
Although it is known that the first case of cancer was recorded in ancient Egypt around 1600 BC, it was not until 1917 during the First World War and the development of mustard gas that chemotherapy against cancer became relevant; however, its properties were not recognised until 1946 to later be used in patients. In this sense, the use of metallopharmaceuticals in cancer therapy was extensively explored until the 1960s with the discovery of cisplatin and its anticancer activity. From that date to the present, the search for more effective, more selective metallodrugs with fewer side effects has been an area of continuous exploration. Efforts have led to considering a wide variety of metals from the periodic table, mainly from the d-block, as well as a wide variety of organic ligands, preferably with proven biological activity. In this sense, various research groups have found an ideal binder in Schiff bases, since their raw materials are easily accessible, their synthesis conditions are friendly and their denticity can be manipulated. Therefore, in this review, we have explored the anticancer and antitumor activity reported in the literature for coordination complexes of d-block metals coordinated with tridentate Schiff bases (O N O and O N N) derived from salicylaldehyde. For this work, we have used the main scientific databases CCDC® and SciFinder®.
Collapse
Affiliation(s)
- Luis A. Alfonso‐Herrera
- Universidad Veracruzana Facultad de Ciencias QuímicasProlongación de Oriente 6, No. 100994340, OrizabaVeracruzMéxico
- Universidad Autónoma de Nuevo León Facultad de Ingeniería Civil Departamento de Ecomateriales y Energía Av. Universidad S/N Ciudad Universitaria64455San Nicolás de los GarzaNuevo LeónMéxico
| | - Sharon Rosete‐Luna
- Universidad Veracruzana Facultad de Ciencias QuímicasProlongación de Oriente 6, No. 100994340, OrizabaVeracruzMéxico
| | - Delia Hernández‐Romero
- Universidad Veracruzana Facultad de Ciencias QuímicasProlongación de Oriente 6, No. 100994340, OrizabaVeracruzMéxico
| | - José M. Rivera‐Villanueva
- Universidad Veracruzana Facultad de Ciencias QuímicasProlongación de Oriente 6, No. 100994340, OrizabaVeracruzMéxico
| | - José L. Olivares‐Romero
- Instituto de Ecología A.C. Red de Estudios Moleculares AvanzadosClúster Científico y Tecnológico BioMimic® Carretera Antigua a Coatepec, No. 35191070Xalapa, VeracruzMéxico
| | - J. Antonio Cruz‐Navarro
- Universidad Veracruzana Facultad de Ciencias QuímicasProlongación de Oriente 6, No. 100994340, OrizabaVeracruzMéxico
- Universidad Autónoma del Estado de HidalgoÁrea Académica de Química Km 4.5 Carretera Pachuca-Tulancingo42184, Mineral de la ReformaHidalgoMéxico
| | - Anell Soto‐Contreras
- Universidad Veracruzana Facultad de Ciencias QuímicasProlongación de Oriente 6, No. 100994340, OrizabaVeracruzMéxico
- Universidad VeracruzanaFacultad de Ciencias Biológicas y Agropecuarias Km 177 Camino Peñuela-Amatlán S/N94500, Peñuela, Amatlán de los ReyesVeracruzMéxico
| | - Antonino Arenaza‐Corona
- Universidad Nacional Autónoma de México Instituto de Química, Circuito Exterior S/N04510Ciudad de MéxicoMéxico
| | - David Morales‐Morales
- Universidad Nacional Autónoma de México Instituto de Química, Circuito Exterior S/N04510Ciudad de MéxicoMéxico
| | - Raúl Colorado‐Peralta
- Universidad Veracruzana Facultad de Ciencias QuímicasProlongación de Oriente 6, No. 100994340, OrizabaVeracruzMéxico
| |
Collapse
|
3
|
Zhu M, Ji X, Wang S, Zhou Y, Bao H, Li S, Gao E, Wu S, Wang J, Chen Q, Xu J, Zhu X. Crystal structure, DNA binding, cytotoxicity and anticancer ability of Zn(II) complex constructed by 2-(1,2,4)triazol-1-yl-isonicotinic acid. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
4
|
İNCİ D. A new ternary Cu (II) complex with 4,7‐dimethyl‐1,10‐phenanthroline and NOO‐type tridentate Schiff base ligand: Synthesis, crystal structure,
biomacromolecular interactions
, and radical scavenging activities. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.6016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Duygu İNCİ
- Department of Chemistry, Faculty of Arts and Sciences Kocaeli University Kocaeli 41380 Turkey
| |
Collapse
|
5
|
Reheman D, Zhao J, Guan S, Xu GC, Li YJ, Sun SR. Apoptotic effect of novel pyrazolone-based derivative [Cu(PMPP-SAL)(EtOH)] on HeLa cells and its mechanism. Sci Rep 2020; 10:18235. [PMID: 33106514 PMCID: PMC7588458 DOI: 10.1038/s41598-020-75173-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/09/2020] [Indexed: 11/10/2022] Open
Abstract
Pyrazolone complexes have strong anti-tumor and antibacterial properties, but the anti-tumor mechanism of pyrazolone-based copper complexes has not been fully understood. In this study, the possible mechanism and the inhibitory effect of a novel pyrazolone-based derivative compound [Cu(PMPP-SAL)(EtOH)] on human cervical cancer cells (HeLa cells) was investigated. [Cu(PMPP-SAL)(EtOH)] effectively inhibited proliferation of HeLa cells in vitro with an IC50 value of 2.082 after treatment for 72 h. Cell cycle analysis showed apoptosis was induced by blocking the cell cycle in the S phase. [Cu(PMPP-SAL)(EtOH)] promoted the loss of mitochondrial membrane potential, release of cytochrome c, PARP cleavage, and activation of caspase-3/9 in HeLa cells. Additionally, [Cu(PMPP-SAL)(EtOH)] inhibited the PI3K/AKT pathway and activated the P38/MAPK, and JNK/MAPK pathways. [Cu(PMPP-SAL)(EtOH)] also inhibited the phosphorylation of Iκ-Bα in the NF-κB pathway activated by TNF-α, thus restricting the proliferation of HeLa cells which were activated by TNF-α. In conclusion, [Cu(PMPP-SAL)(EtOH)] inhibited the growth of HeLa cells and induced apoptosis possibly via the caspase-dependent mitochondria-mediated pathway. These results suggest that [Cu(PMPP-SAL)(EtOH)] can be a potential candidate for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Delizhaer Reheman
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Jing Zhao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China.,People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, China
| | - Shan Guan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Guan-Cheng Xu
- Institute of Applied Chemistry, Xinjiang University, Urumqi, 830046, China
| | - Yi-Jie Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Su-Rong Sun
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China.
| |
Collapse
|