1
|
Liu X, Liu F. Bimetallic (AuAg, AuPd and AgPd) nanoparticles supported on cellulose-based hydrogel for reusable catalysis. Carbohydr Polym 2023; 310:120726. [PMID: 36925251 DOI: 10.1016/j.carbpol.2023.120726] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/18/2023] [Accepted: 02/15/2023] [Indexed: 02/26/2023]
Abstract
Biopolymer-derived hydrogels with low-cost and sustainable features have been considered as fascinating supported materials for metal nanoparticles. Cellulose, as the most abundant biopolymer, is a renewable raw material to prepare biopolymer-derived hydrogels for catalysis. Here, a cellulose-based hydrogel is designed to load bimetallic (AuAg, AuPd and AgPd) nanoparticles. 4-Nitrophenol reduction and Suzuki-Miyaura coupling reactions are selected to evaluate and compare the catalytic performance of the resulting bimetallic nanoparticle-loaded cellulose-based composite hydrogels. The bimetallic nanocomposite hydrogels are easy to be recycled over 10 times during the catalytic experiments and possess good applicability and generality for various substrates. The catalytic activity of bimetallic nanocomposite hydrogels was compared with recent literatures. In addition, the possible catalytic mechanism is also proposed. This work is expected to give a new insight for designing and preparing bimetallic nanoparticle-based cellulose hydrogels and proves its applicability and prospect in the catalytic field.
Collapse
Affiliation(s)
- Xiong Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China.
| | - Fangfei Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China.
| |
Collapse
|
2
|
Koolivand M, Nikoorazm M, Ghorbani‐Choghamarani A, Tahmasbi B. Cu–citric acid metal–organic framework: Synthesis, characterization and catalytic application in Suzuki–Miyaura cross‐coupling reaction and oxidation of sulfides. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Mostafa Koolivand
- Department of Chemistry, Faculty of Science Ilam University Ilam Iran
| | - Mohsen Nikoorazm
- Department of Chemistry, Faculty of Science Ilam University Ilam Iran
| | | | - Bahman Tahmasbi
- Department of Chemistry, Faculty of Science Ilam University Ilam Iran
| |
Collapse
|
3
|
Tamoradi T, Mohammadi M, Kiasat AR, Davarpanah J, Karmakar B. A Competent, Atom-Efficient and Sustainable Synthesis of Bis-Coumarin Derivatives Catalyzed over Strontium-Doped Asparagine Modified Graphene Oxide Nanocomposite. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1998149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Taiebeh Tamoradi
- Production Technology Research Institute -ACECR, Ahvaz, Iran
- Department of Chemistry, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Masoud Mohammadi
- Faculty of Science, Department of Chemistry, Ilam University, Ilam, Iran
| | - Ali Reza Kiasat
- Department of Chemistry, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | - Bikash Karmakar
- Department of Chemistry, Gobardanga Hindu College, Pargana, India
| |
Collapse
|
4
|
Abstract
Over the past few decades, the use of transition metal nanoparticles (NPs) in catalysis has attracted much attention and their use in C–C bond forming reactions constitutes one of their most important applications. A huge variety of metal NPs, which have showed high catalytic activity for C–C bond forming reactions, have been developed up to now. Many kinds of stabilizers, such as inorganic materials, magnetically recoverable materials, porous materials, organic–inorganic composites, carbon materials, polymers, and surfactants have been utilized to develop metal NPs catalysts. This review classified and outlined the categories of metal NPs by the type of support.
Collapse
|
5
|
Patel A, Patel A. Designing of Stabilized Palladium Nanoclusters: Characterization, Effect of Support and Acidity on C–C cross coupling. Catal Letters 2021. [DOI: 10.1007/s10562-021-03658-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Soni J, Sethiya A, Sahiba N, Agarwal S. Recent advancements in organic synthesis catalyzed by graphene oxide metal composites as heterogeneous nanocatalysts. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jay Soni
- Department of Chemistry, Synthetic Organic Chemistry Laboratory MLSU Udaipur India
| | - Ayushi Sethiya
- Department of Chemistry, Synthetic Organic Chemistry Laboratory MLSU Udaipur India
| | - Nusrat Sahiba
- Department of Chemistry, Synthetic Organic Chemistry Laboratory MLSU Udaipur India
| | - Shikha Agarwal
- Department of Chemistry, Synthetic Organic Chemistry Laboratory MLSU Udaipur India
| |
Collapse
|
7
|
Darroudi M, Ranjbar S, Esfandiar M, Khoshneviszadeh M, Hamzehloueian M, Khoshneviszadeh M, Sarrafi Y. Synthesis of Novel Triazole Incorporated Thiazolone Motifs Having Promising Antityrosinase Activity through Green Nanocatalyst CuI‐Fe
3
O
4
@SiO
2
(TMS‐EDTA). Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5962] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Mahdieh Darroudi
- Department of Organic Chemistry, Faculty of Chemistry University of Mazandaran Babolsar 47416 Iran
| | - Sara Ranjbar
- Pharmaceutical Sciences Research Center Shiraz University of Medical Sciences Shiraz Iran
| | - Mohammad Esfandiar
- Department of Organic Chemistry, Faculty of Chemistry University of Mazandaran Babolsar 47416 Iran
| | - Mahsima Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center Shiraz University of Medical Sciences Shiraz Iran
| | | | - Mehdi Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center Shiraz University of Medical Sciences Shiraz Iran
- Department of Medicinal Chemistry, School of Pharmacy Shiraz University of Medical Sciences Shiraz Iran
| | - Yaghoub Sarrafi
- Department of Organic Chemistry, Faculty of Chemistry University of Mazandaran Babolsar 47416 Iran
| |
Collapse
|
8
|
Salahshournia B, Hamadi H, Nobakht V. Designing a bifunctional metal-organic framework by tandem post-synthetic modifications; an efficient and recyclable catalyst for Suzuki-Miyaura cross-coupling reaction. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
9
|
Preparation of chitosan/poly(methacrylic acid) supported palladium nanofibers as an efficient and stable catalyst for Heck reaction. J CHEM SCI 2020. [DOI: 10.1007/s12039-020-01805-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Sarvestani M, Azadi R. Synthesis and Characterization of GO-Chit-Ni Nanocomposite as a Recoverable Nanocatalyst for Reducing Nitroarenes in Water. LETT ORG CHEM 2020. [DOI: 10.2174/1570178616666190806125217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present study, nickel nanoparticles (Ni-NPs) immobilized on graphene oxide-chitosan
(GO-Chit-Ni) have been synthesized and characterized as a catalyst for reduction of nitroarenes in water.
For this purpose, GO has been functionalized with chitosan (GO-Chit). Then, Ni-NPs were immobilized
on the surface of GO-Chit using a simple method. The GO-Chi-Ni nanocomposites were characterized
using Fourier Transforms Infrared Spectroscopy (FT-IR), Transmission Electron Microscopy
(TEM), X-Ray Diffraction Measurements (XRD), and Atomic Adsorption Spectrometry (AAS). The
GO-Chi-Ni nanoparticles demonstrated appropriate catalytic activity in reducing nitroarenes to aryl
amines in the existence of sodium borohydride (NaBH4) aqueous solution as a hydrogen source at
80oC. This catalytic system applies environmentally benign water as a solvent that is cheap, easily accessible,
non-toxic, non-volatile, non-flammable and thermally stable. This type of catalyst can be applied
several times with no considerable change in its performance.
Collapse
Affiliation(s)
- Mosayeb Sarvestani
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 61357-43169, Iran
| | - Roya Azadi
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 61357-43169, Iran
| |
Collapse
|
11
|
Shekarizadeh A, Azadi R. Synthesis of Pd@graphene oxide framework nanocatalyst with enhanced activity in Heck‐Mizoroki cross‐coupling reaction. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5775] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Arezoo Shekarizadeh
- Chemistry Department, College of ScienceShahid Chamran University of Ahvaz Ahvaz 61357‐43169 Iran
| | - Roya Azadi
- Chemistry Department, College of ScienceShahid Chamran University of Ahvaz Ahvaz 61357‐43169 Iran
| |
Collapse
|
12
|
Zhao M, Wu Y, Cao J. Carbon‐Based Material‐Supported Palladium Nanocatalysts in Coupling Reactions: Discussion on their Stability and Heterogeneity. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5539] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ming Zhao
- Key Laboratory of Coal Processing and Efficient Utilization (Ministry of Education)China University of Mining & Technology Xuzhou 221116 Jiangsu China
- Pizhou Economic and Technological Development Zone Pizhou 221300 China
| | - Yaxing Wu
- Key Laboratory of Coal Processing and Efficient Utilization (Ministry of Education)China University of Mining & Technology Xuzhou 221116 Jiangsu China
| | - Jing‐Pei Cao
- Key Laboratory of Coal Processing and Efficient Utilization (Ministry of Education)China University of Mining & Technology Xuzhou 221116 Jiangsu China
| |
Collapse
|
13
|
Pd‐Cu alloy nanoparticle supported on amine‐terminated ionic liquid functional 3D graphene and its application on Suzuki cross‐coupling reaction. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
14
|
Golestanzadeh M, Naeimi H. Palladium decorated on a new dendritic complex with nitrogen ligation grafted to graphene oxide: fabrication, characterization, and catalytic application. RSC Adv 2019; 9:27560-27573. [PMID: 35529209 PMCID: PMC9070579 DOI: 10.1039/c9ra04511b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 08/15/2019] [Indexed: 12/05/2022] Open
Abstract
Immobilized Pd nanoparticles on a new ligand, namely, tris(pentaethylene-pentamine)triazine supported on graphene oxide (Pdnp-TPEPTA(L)-GO) was introduced as a novel and robust heterogeneous catalyst for use in C-C bond formation reaction. The Pdnp-TPEPTA(L)-GO catalyst was synthesized by complexation of Pd with TPEPTA as a ligand with high N-ligation sites that were supported on graphene oxide through 3-chloropropyltrimethoxysilane. The prepared catalyst was characterized using some microscopic and spectroscopic techniques. The TPEPTA(L)-GO substrate is a 2D heterogeneous catalyst with a high specific surface area and a large amount of N-ligation sites. The Pdnp-TPEPTA(L)-GO catalyst used in the C-C bond formation reaction between aryl or heteroaryl and phenylboronic acid derivatives was applied towards the synthesis of biaryl units in high isolated yields. Notably, a series of competing experiments were performed to establish the selectivity trends of the presented method. Also, this catalyst system was reusable at least six times without a significant decrease in its catalytic activity.
Collapse
Affiliation(s)
- Mohsen Golestanzadeh
- Departetment of Organic Chemistry, Faculty of Chemistry, University of Kashan Kashan 8731751167 Iran +98-31-55912397 +98-31-55912388
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences Isfahan 8174673461 Iran
| | - Hossein Naeimi
- Departetment of Organic Chemistry, Faculty of Chemistry, University of Kashan Kashan 8731751167 Iran +98-31-55912397 +98-31-55912388
| |
Collapse
|
15
|
Rafiee F, Khavari P, Payami Z, Ansari N. Palladium nanoparticles immobilized on the magnetic few layer graphene support as a highly efficient catalyst for ligand free Suzuki cross coupling and homo coupling reactions. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.01.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Sarvestani M, Azadi R. Efficient reduction of nitroarenes in water catalyzed by reusable Pd nanoparticles immobilized on chitosan-functionalized graphene oxide. CAN J CHEM 2019. [DOI: 10.1139/cjc-2018-0011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Graphene oxide was functionalized with chitosan for palladium immobilization (GO–Chit–Pd), which was used as an efficient catalyst for the reduction of aromatic nitro compounds using sodium borohydride in water. To achieve the best catalytic efficacy, various parameters such as temperature, solvent, mole ratio of hydrogen sources, and the amount of catalyst were optimized. The method has been applied to the reduction of a broad range of nitroarenes with different properties. The easy purification, convenient operation, environmental friendliness, and high product yields render this method viable for use. The nanocatalyst can be easily separated and efficiently recovered and reused for multiple cycles without appreciable loss in its catalytic activity.
Collapse
Affiliation(s)
- Mosayeb Sarvestani
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 61357-43169, Iran
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 61357-43169, Iran
| | - Roya Azadi
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 61357-43169, Iran
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 61357-43169, Iran
| |
Collapse
|
17
|
Simion A, Candu N, Coman SM, Primo A, Esteve-Adell I, Michelet V, Parvulescu VI, Garcia H. Bimetallic Oriented ( Au
/ Cu2
O) vs. Monometallic 1.1.1 Au
(0) or 2.0.0 Cu2
O Graphene-Supported Nanoplatelets as Very Efficient Catalysts for Michael and Henry Additions. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Andrada Simion
- Department of Organic Chemistry; Biochemistry and Catalysis; University of Bucharest; 4-12 Regina ElisabetaBlv. 030016 Bucharest Romania
| | - Natalia Candu
- Department of Organic Chemistry; Biochemistry and Catalysis; University of Bucharest; 4-12 Regina ElisabetaBlv. 030016 Bucharest Romania
| | - Simona M. Coman
- Department of Organic Chemistry; Biochemistry and Catalysis; University of Bucharest; 4-12 Regina ElisabetaBlv. 030016 Bucharest Romania
| | - Ana Primo
- Instituto Universitario de TecnologiaQuimica Consejo Superior de Investigaciones Científicas; Universidad Politecnica de Valencia; Avda. de los Naranjos s/n 46022 Valencia Spain
| | - Ivan Esteve-Adell
- Instituto Universitario de TecnologiaQuimica Consejo Superior de Investigaciones Científicas; Universidad Politecnica de Valencia; Avda. de los Naranjos s/n 46022 Valencia Spain
| | - Véronique Michelet
- Institut de Chimie de Nice, UMR 7272 CNRS, Parc Valrose; Faculté des Sciences; University Côte d′Azur; 06100 Nice France
| | - Vasile I. Parvulescu
- Department of Organic Chemistry; Biochemistry and Catalysis; University of Bucharest; 4-12 Regina ElisabetaBlv. 030016 Bucharest Romania
| | - Hermenegildo Garcia
- Instituto Universitario de TecnologiaQuimica Consejo Superior de Investigaciones Científicas; Universidad Politecnica de Valencia; Avda. de los Naranjos s/n 46022 Valencia Spain
| |
Collapse
|
18
|
Affiliation(s)
- Vincenzo Campisciano
- Department of Biological, Chemical and Pharmaceutical Sciences and TechnologiesUniversity of Palermo Viale delle Scienze, Ed. 17 90128 Palermo Italy
| | - Michelangelo Gruttadauria
- Department of Biological, Chemical and Pharmaceutical Sciences and TechnologiesUniversity of Palermo Viale delle Scienze, Ed. 17 90128 Palermo Italy
| | - Francesco Giacalone
- Department of Biological, Chemical and Pharmaceutical Sciences and TechnologiesUniversity of Palermo Viale delle Scienze, Ed. 17 90128 Palermo Italy
| |
Collapse
|
19
|
Stabilized Palladium Nanoparticles: Synthesis, Multi-spectroscopic Characterization and Application for Suzuki–Miyaura Reaction. Catal Letters 2018. [DOI: 10.1007/s10562-018-2559-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|