1
|
Blancou W, Jismy B, Touil S, Allouchi H, Abarbri M. Simple and Expedient Access to Novel Fluorinated Thiazolo- and Oxazolo[3,2- a]pyrimidin-7-one Derivatives and Their Functionalization via Palladium-Catalyzed Reactions. Molecules 2022; 27:3013. [PMID: 35566366 PMCID: PMC9100779 DOI: 10.3390/molecules27093013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 12/04/2022] Open
Abstract
An efficient, versatile, and one-pot method for the preparation of novel fluorinated thiazolo- and oxazolo[3,2-a]pyrimidin-7-ones is described from 2-aminothiazoles or 2-amino-oxazoles and fluorinated alkynoates. This transformation, performed under transition-metal-free conditions, offers new fluorinated cyclized products with good to excellent yields. Moreover, the functionalization of these N-fused scaffolds via the Suzuki-Miyaura and Sonogashira cross-coupling reactions led to the synthesis of highly diverse thiazolo- and oxazolo[3,2-a]pyrimidin-7-ones.
Collapse
Affiliation(s)
- Wafa Blancou
- Laboratoire de Physico-Chimie des Matériaux et des Electrolytes pour l’Energie (PCM2E), EA 6299, Avenue Monge, Faculté des Sciences, Université de Tours, Parc de Grandmont, 37200 Tours, France;
- Laboratoire des Composés Hétéro-Organiques et Matériaux Nanostructurés (LR18ES11), Faculté des Sciences de Bizerte, Université de Carthage, Zarzouna 7021, Tunisia;
| | - Badr Jismy
- Laboratoire de Physico-Chimie des Matériaux et des Electrolytes pour l’Energie (PCM2E), EA 6299, Avenue Monge, Faculté des Sciences, Université de Tours, Parc de Grandmont, 37200 Tours, France;
| | - Soufiane Touil
- Laboratoire des Composés Hétéro-Organiques et Matériaux Nanostructurés (LR18ES11), Faculté des Sciences de Bizerte, Université de Carthage, Zarzouna 7021, Tunisia;
| | - Hassan Allouchi
- Faculté de Pharmacie, Université de Tours, EA 7502 SIMBA, 31 Avenue Monge, 37200 Tours, France;
| | - Mohamed Abarbri
- Laboratoire de Physico-Chimie des Matériaux et des Electrolytes pour l’Energie (PCM2E), EA 6299, Avenue Monge, Faculté des Sciences, Université de Tours, Parc de Grandmont, 37200 Tours, France;
| |
Collapse
|
2
|
Liu T, Shi J, Liu D, Zhang D, Song B, Hu D. Discovery of Novel Benzo[4,5]thiazolo(oxazolo)[3,2- a]pyrimidinone Mesoionic Derivatives as Potential Antibacterial Agents and Mechanism Research. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:99-110. [PMID: 34978196 DOI: 10.1021/acs.jafc.1c04715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A series of benzo[4,5]thiazole(oxazole)[3,2-a]pyrimidine mesoionic compounds were designed and synthesized. Antibacterial activity tests revealed that compound A23 showed good in vitro activities against Xanthomonas oryzae pv. Oryzicola (Xoc) and Xanthomonas oryzae pv. oryzae (Xoo), with half-maximal effective concentration (EC50) values of 47.6 and 36.8 μM, respectively, which were better than positive control agents thiodiazole copper (281 and 259 μM) and bismerthiazol (245 and 220 μM). The protective activities of compound A23 anti-Xoc and anti-Xoo were 39.7% and 49.2%, respectively, which were better than those of bismerthiazol (31.5% and 40.7%). Compound A23 improved defensive enzyme activities in rice. In addition, compound A23 could upregulate the expression of succinate dehydrogenase (SDH) in the oxidative phosphorylation (OXPHOS) pathway through proteomics analysis, which was consistent with the result of the SDH activity test. Thus, compound A23 is a novel potential antibacterial agent that can be further developed.
Collapse
Affiliation(s)
- Ting Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Jing Shi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Dengyue Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Desheng Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
3
|
Kordmahalleh MY, Moradi AV, Hossaini Z, Golsefidi MA. Synthesis and evaluation of antioxidant and antimicrobial activity of new spiropyrrolopyrrolizine compounds: Using Fe
3
O
4
/TiO
2
/Multiwall carbon nanotubes (MWCNTs) magnetic nanocomposites. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
4
|
Guanine base stabilized on the magnetic nanoparticles as recyclable catalyst “on water” for the synthesis of spirooxindole derivatives. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Khalaj M. Preparation of benzo[4,5]thiazolo[3,2-a]chromeno[4,3-d]pyrimidin-6-one derivatives using MgO-MgAl2O4 composite nano-powder. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.05.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
6
|
Eftekhari A, Foroughifar N, Hekmati M, Khobi M. Fe
3
O
4
@
L
‐arginine magnetic nanoparticles: A novel and magnetically retrievable catalyst for the synthesis of 1′3‐diaryl‐2N‐azaphenalene. J CHIN CHEM SOC-TAIP 2019. [DOI: 10.1002/jccs.201800274] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Asghar Eftekhari
- Department of Organic ChemistryFaculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University Tehran Iran
| | - Naser Foroughifar
- Department of Chemistry, Tehran North BranchIslamic Azad University Tehran Islamic Republic of Iran
| | - Malak Hekmati
- Department of Organic ChemistryFaculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University Tehran Iran
| | - Mahdi Khobi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research CenterTehran University of Medical Sciences Tehran Islamic Republic of Iran
| |
Collapse
|
7
|
Bis(p-sulfoanilino)triazine-functionalized silica-coated magnetite nanoparticles as an efficient and magnetically reusable nano-catalyst for Biginelli-type reaction. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3357-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
8
|
Cobalt (II) Complexes with Schiff Base Ligands Derived from Terephthalaldehyde and ortho-Substituted Anilines: Synthesis, Characterization and Antibacterial Activity. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8030385] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Synthesis, Characterization and Antibacterial Activity of Novel 1,3-Diethyl-1,3-bis(4-nitrophenyl)urea and Its Metal(II) Complexes. Molecules 2017; 22:molecules22122125. [PMID: 29207464 PMCID: PMC6149768 DOI: 10.3390/molecules22122125] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 11/24/2017] [Accepted: 11/27/2017] [Indexed: 11/23/2022] Open
Abstract
A bioactive ligand and its dinuclear metal(II) complexes were synthesized and characterized by Fourier-transform infrared spectroscopy (FT-IR), ultraviolet-visible (UV-Visible), nuclear magnetic resonance (1H-NMR), mass spectroscopy and molar conductance measurements. The ligand has been crystalized in the monoclinic system with a P21/c space group. The biological activities of metal complexes were evaluated using disc diffusion and broth dilution methods. In vitro antibacterial activities of the ligand and their metal complexes were examined against two Gram-positive bacteria (Bacillus subtilis and Staphylococcus aureus) and two Gram-negative bacteria (Escherichia coli and Serratia marcescens) and compared to the standard drugs. It was found that metal complexes displayed much higher antibacterial activities and better inhibitory effects than that of the ligand and standard drugs. Among these complexes, the compound having Zn-metal showed greater antibacterial activity against all four tested bacteria and was more effective against Serratia marcescens with the zone inhibition diameter of 26 mm and MIC value of 31.25 µg/mL.
Collapse
|