1
|
Chang CW, Lemich SB, Schütz P, Weerathaworn S, Weißpflog M, Wu CT, Tseng YH, Chang CT, Hankiewicz B, Abetz V, Chen JT. Dual-Responsive PIL Films with Gold Nanoparticles: Tailoring Electrical Responses to pH and Thermal Stimuli. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61096-61104. [PMID: 39441949 DOI: 10.1021/acsami.4c14733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
In recent years, stimuli-responsive poly(ionic liquids) (PILs) have attracted great attention. The stimuli-dependent properties, particularly the electrical properties, of multiresponsive PILs incorporating functionalized nanoparticles, however, have been less investigated. In this work, we present the synthesis, characterization, and application of PIL films incorporating pH- and thermoresponsive hybrid materials composed of gold nanoparticles functionalized with poly(2-(dimethylamino)ethyl methacrylate) (Au@PDMAEMA). The Au@PDMAEMA nanoparticles exhibit distinct responsiveness to changes in environmental pH and temperature, thereby altering the electrical properties of the PIL films blended with responsive gold nanoparticles (PIL w/Au). This research not only fills a gap in the study of electrical properties of multiresponsive nanoparticle-incorporated PILs but also extends the potential applications of PILs in various fields, including smart sensors and electronic devices.
Collapse
Affiliation(s)
- Chia-Wei Chang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 300093 Hsinchu, Taiwan
| | | | - Patrick Schütz
- Institute of Physical Chemistry, University of Hamburg, 20146 Hamburg, Germany
| | | | - Maria Weißpflog
- Institute of Physical Chemistry, University of Hamburg, 20146 Hamburg, Germany
| | - Chia-Ti Wu
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 300093 Hsinchu, Taiwan
| | - Yu-Hsuan Tseng
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 300093 Hsinchu, Taiwan
| | - Chun-Ting Chang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 300093 Hsinchu, Taiwan
| | - Birgit Hankiewicz
- Institute of Physical Chemistry, University of Hamburg, 20146 Hamburg, Germany
| | - Volker Abetz
- Institute of Physical Chemistry, University of Hamburg, 20146 Hamburg, Germany
- Institute of Membrane Research, Helmholtz-Zentrum Hereon, 21502 Geesthacht, Germany
| | - Jiun-Tai Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 300093 Hsinchu, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 300093 Hsinchu, Taiwan
| |
Collapse
|
2
|
Stawski D. Poly(N,N-dimethylaminoethyl methacrylate) as a bioactive polyelectrolyte-production and properties. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230188. [PMID: 37736533 PMCID: PMC10509595 DOI: 10.1098/rsos.230188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/17/2023] [Indexed: 09/23/2023]
Abstract
Poly(N,N-dimethylaminoethyl methacrylate) is a polyelectrolyte with many important chemical and physical properties and, above all, offers a wide range of interesting biological properties. Currently, research on this polymer is ongoing in several centres around the world. The process of polymerizing the monomer is not easy, as there are difficulties in obtaining a product with repeatable properties. This work collected and described most of the currently known and used polymerization methods of N,N-dimethylaminoethyl methacrylate, taking into account the type of method, the solvent used, the initiator, as well as the process temperature and the average molecular weight of the polymer obtained. The most important properties of the discussed polymer, such as solubility, bioactivity, hydrophilicity, cytotoxicity, conductivity, and thermal and hydrodynamic parameters, are discussed on the basis of the available scientific literature. This work aims, among other things, to increase the possibility of using poly(N,N-dimethylaminoethyl methacrylate) as a material in advanced practical applications. Therefore, various methods of applied use of the polymer in question have also been described so far. Copolymers of the N,N-dimethylaminoethyl methacrylate are now too large a collection to fit in a single publication. Therefore, only the most interesting examples were cited in this work.
Collapse
Affiliation(s)
- Dawid Stawski
- Institute of Materials Science of Textiles and Polymer Composites, Lodz University of Technology, Żeromskiego 116 str, 90-924 Lodz, Poland
| |
Collapse
|
3
|
Azadbakht M, Salami‐Kalajahi M, Esmizadeh E, Vahidifar A. Synthesis of poly(styrene‐
co
‐allylamine)‐
b
‐poly(2‐(dimethylamino)ethyl methacrylate) graft copolymers via “grafting from” atom transfer radical polymerization and their self‐assembly in aqueous media. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Maryam Azadbakht
- Department of Chemical Engineering University of Bonab Bonab Iran
| | - Mehdi Salami‐Kalajahi
- Faculty of Polymer Engineering Sahand University of Technology Tabriz Iran
- Institute of Polymeric Materials Sahand University of Technology Tabriz Iran
| | - Elnaz Esmizadeh
- Department of Chemical Engineering University of Bonab Bonab Iran
| | - Ali Vahidifar
- Department of Chemical Engineering University of Bonab Bonab Iran
| |
Collapse
|
4
|
Johnson L, Gray DM, Niezabitowska E, McDonald TO. Multi-stimuli-responsive aggregation of nanoparticles driven by the manipulation of colloidal stability. NANOSCALE 2021; 13:7879-7896. [PMID: 33881098 DOI: 10.1039/d1nr01190a] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The capacity to control the dispersed or aggregated state of colloidal particles is particularly attractive for facilitating a diverse range of smart applications. For this reason, stimuli-responsive nanoparticles have garnered much attention in recent years. Colloidal systems that exhibit multi-stimuli-responsive behaviour are particularly interesting materials due to the greater spatial and temporal control they display in terms of dispersion/aggregation status; such behaviour can be exploited for implant formation, easy separation of a previously dispersed material or for the blocking of unwanted pores. This review will provide an overview of the recent publications regarding multi-stimuli-responsive microgels and hybrid core-shell nanoparticles. These polymer-based nanoparticles are highly sensitive to environmental conditions and can form aggregated clusters due to a loss of colloidal stability, triggered by temperature, pH and ionic strength stimuli. We aim to provide the reader with a discussion of the recent developments in this area, as well as an understanding of the fundamental concepts which underpin the responsive behaviour, and an exploration of their applications.
Collapse
Affiliation(s)
- Luke Johnson
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, UK.
| | - Dominic M Gray
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, UK.
| | - Edyta Niezabitowska
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, UK.
| | - Tom O McDonald
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, UK.
| |
Collapse
|
5
|
Preparation and study on properties of dual responsive block copolymer-grafted polypyrrole smart Janus nanoparticles. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02498-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
6
|
Sheydaei M, Talebi S, Salami-Kalajahi M. Synthesis, characterization, curing, thermophysical and mechanical properties of ethylene dichloride-based polysulfide polymers. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2020. [DOI: 10.1080/10601325.2020.1857267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Milad Sheydaei
- Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, Tabriz, Iran
| | - Saeid Talebi
- Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, Tabriz, Iran
| | - Mehdi Salami-Kalajahi
- Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, Tabriz, Iran
| |
Collapse
|
7
|
Razavi B, Abbaszadeh R, Salami-Kalajahi M, Roghani-Mamaqani H. Multi-responsive poly(amidoamine)-initiated dendritic-star supramolecular structures containing UV cross-linkable coumarin groups for smart drug delivery. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114138] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Sheydaei M, Talebi S, Salami-Kalajahi M. Synthesis of ethylene dichloride-based polysulfide polymers: investigation of polymerization yield and effect of sulfur content on solubility and flexibility. J Sulphur Chem 2020. [DOI: 10.1080/17415993.2020.1812610] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Milad Sheydaei
- Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, Tabriz, Iran
| | - Saeid Talebi
- Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, Tabriz, Iran
| | - Mehdi Salami-Kalajahi
- Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, Tabriz, Iran
| |
Collapse
|
9
|
Temperature-induced self-assembly of amphiphilic triblock terpolymers to low cytotoxic spherical and cubic structures as curcumin carriers. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113504] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Safavi-Mirmahalleh SA, Salami-Kalajahi M, Roghani-Mamaqani H. Adsorption kinetics of methyl orange from water by pH-sensitive poly(2-(dimethylamino)ethyl methacrylate)/nanocrystalline cellulose hydrogels. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:28091-28103. [PMID: 32405949 DOI: 10.1007/s11356-020-09127-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
A series of hydrogel nanocomposites was fabricated by in situ polymerization of 2-(dimethylamino)ethyl methacrylate (DMAEMA) in presence of different amounts of (amine- and alkyl-modified) nanocrystalline cellulose (NCC). Modification and nanocomposites properties were proved by different analysis methods such as Fourier-transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS), and field emission scanning electron microscopy (FE-SEM). The new hydrogel nanocomposites were applied for removing methyl orange (MO) used as anionic dye and presented in process water at different pH values. The effects of the fabrication process such as modification and content of NCC, contact time, and pH value on swelling ratio (SR), and equilibrium adsorption kinetics were studied. Results showed that the swelling ratio of PDMAEMA-based nanocomposites varied with the different types of nanoparticles showing the significant effect of the modification process. The MO adsorption into the hydrogel nanocomposites was affected by intermolecular and electrostatic interactions between functional groups of hydrogel and dye. The adsorption capacity decreased at high pH value, and it was significantly affected type of nanoparticles introduced into the hydrogel network. The addition of unmodified NCC did not affect adsorption kinetics significantly. Finally, adsorption kinetics was investigated by pseudo-first-order, pseudo-second-order and intraparticle diffusion models where pseudo-first-order model showed the best correlation with experimental results.
Collapse
Affiliation(s)
- Seyedeh-Arefeh Safavi-Mirmahalleh
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| | - Mehdi Salami-Kalajahi
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran.
- Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran.
| | - Hossein Roghani-Mamaqani
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran.
- Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran.
| |
Collapse
|
11
|
Vatankhah Z, Dehghani E, Salami-Kalajahi M, Roghani-Mamaqani H. Seed's morphology-induced core-shell composite particles by seeded emulsion polymerization for drug delivery. Colloids Surf B Biointerfaces 2020; 191:111008. [DOI: 10.1016/j.colsurfb.2020.111008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/08/2020] [Accepted: 03/31/2020] [Indexed: 01/25/2023]
|
12
|
Najafi F, Salami-Kalajahi M, Roghani-Mamaqani H. Synthesis of amphiphilic Janus dendrimer and its application in improvement of hydrophobic drugs solubility in aqueous media. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109804] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Rostami-Tapeh-Esmail E, Golshan M, Salami-Kalajahi M, Roghani-Mamaqani H. UV-stabilized self-assembled amphiphilic triblock terpolymers supramolecular structures with low cytotoxicity as doxorubicin carriers. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110745. [DOI: 10.1016/j.msec.2020.110745] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/24/2020] [Accepted: 02/06/2020] [Indexed: 10/25/2022]
|
14
|
Pd nanoparticle incorporated mesoporous silicas with excellent catalytic activity and dual responsivity. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124074] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
15
|
Razavi B, Abdollahi A, Roghani-Mamaqani H, Salami-Kalajahi M. Light- and temperature-responsive micellar carriers prepared by spiropyran-initiated atom transfer polymerization: Investigation of photochromism kinetics, responsivities, and controlled release of doxorubicin. POLYMER 2020. [DOI: 10.1016/j.polymer.2019.122046] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Razavi B, Abdollahi A, Roghani-Mamaqani H, Salami-Kalajahi M. Light-, temperature-, and pH-responsive micellar assemblies of spiropyran-initiated amphiphilic block copolymers: Kinetics of photochromism, responsiveness, and smart drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 109:110524. [PMID: 32228960 DOI: 10.1016/j.msec.2019.110524] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/27/2019] [Accepted: 12/05/2019] [Indexed: 12/31/2022]
Abstract
Multi-responsive polymer assemblies are a significant class of smart polymers with potential applications in drug-delivery and gen-delivery systems. Poly(dimethylaminoethyl methacrylate) (PDMAEMA) is among the most applicable multi-responsive polymers that changes its physical and chemical properties in response to temperature, pH, and CO2. Herein, different types of light-, temperature-, pH-, and CO2-responsive polymer assemblies were developed based on multi-responsive PDMAEMA and hydrophobic poly(methyl methacrylate) blocks. In addition, spiropyran was incorporated at the chain ends by using spiropyran-initiated atom transfer radical polymerization method. Novel smart drug-delivery systems were developed by self-assembly of these amphiphilic block copolymers to micellar morphologies in aqueous media. Dynamic light scattering results showed that size of the polymer assemblies changed in response to pH variations (from 5 to 9), temperature changes (above the lower critical solution temperature (LCST) of PDMAEMA), and also UV light irradiation (wavelength of 365 nm). The LCST of PPDMAEMA showed a shift from 53 to 60 °C after isomerization of the SP to MC form, as a result of increase of polarity and water-solubility. The PDMAEMA block results in responsivity of the prepared copolymer assemblies to CO2, which display pH variation from 8-8.6 to 5-6 after 2 min of CO2 gas bubbling. All the multi-responsive micellar polymer assemblies showed various loading capacities and release profiles, and the DOX release can be controlled by pH, temperature, and light. The release efficiency is reached to 60-85% at pH 5.3, 80-90% at temperatures higher than the LCST of PDMAEMA (60 °C), and also 90-100% under UV light irradiation after 48 h. In summary, the multi-responsive polymer assemblies based on amphiphilic block copolymers containing spiropyran chain end groups in the current study have potential applications in smart drug-delivery systems, and offer controlling over the drug-release by different triggers, such as light irradiation, pH variation, and temperature change. A very low concentration of spiropyran molecules (one per polymer chain) showed light-controlling of drug-release from the assemblies with high efficiencies.
Collapse
Affiliation(s)
- Bahareh Razavi
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box: 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| | - Amin Abdollahi
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box: 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| | - Hossein Roghani-Mamaqani
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box: 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran.
| | - Mehdi Salami-Kalajahi
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box: 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran.
| |
Collapse
|
17
|
Abousalman-Rezvani Z, Eskandari P, Roghani-Mamaqani H, Salami-Kalajahi M. Synthesis of coumarin-containing multi-responsive CNC-grafted and free copolymers with application in nitrate ion removal from aqueous solutions. Carbohydr Polym 2019; 225:115247. [DOI: 10.1016/j.carbpol.2019.115247] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/23/2019] [Accepted: 08/23/2019] [Indexed: 12/21/2022]
|
18
|
Abousalman-Rezvani Z, Eskandari P, Roghani-Mamaqani H, Mardani H, Salami-Kalajahi M. Grafting light-, temperature, and CO2-responsive copolymers from cellulose nanocrystals by atom transfer radical polymerization for adsorption of nitrate ions. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121830] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Hajebi S, Rabiee N, Bagherzadeh M, Ahmadi S, Rabiee M, Roghani-Mamaqani H, Tahriri M, Tayebi L, Hamblin MR. Stimulus-responsive polymeric nanogels as smart drug delivery systems. Acta Biomater 2019; 92:1-18. [PMID: 31096042 PMCID: PMC6661071 DOI: 10.1016/j.actbio.2019.05.018] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/01/2019] [Accepted: 05/06/2019] [Indexed: 12/17/2022]
Abstract
Nanogels are three-dimensional nanoscale networks formed by physically or chemically cross-linking polymers. Nanogels have been explored as drug delivery systems due to their advantageous properties, such as biocompatibility, high stability, tunable particle size, drug loading capacity, and possible modification of the surface for active targeting by attaching ligands that recognize cognate receptors on the target cells or tissues. Nanogels can be designed to be stimulus responsive, and react to internal or external stimuli such as pH, temperature, light and redox, thus resulting in the controlled release of loaded drugs. This "smart" targeting ability prevents drug accumulation in non-target tissues and minimizes the side effects of the drug. This review aims to provide an introduction to nanogels, their preparation methods, and to discuss the design of various stimulus-responsive nanogels that are able to provide controlled drug release in response to particular stimuli. STATEMENT OF SIGNIFICANCE: Smart and stimulus-responsive drug delivery is a rapidly growing area of biomaterial research. The explosive rise in nanotechnology and nanomedicine, has provided a host of nanoparticles and nanovehicles which may bewilder the uninitiated reader. This review will lay out the evidence that polymeric nanogels have an important role to play in the design of innovative drug delivery vehicles that respond to internal and external stimuli such as temperature, pH, redox, and light.
Collapse
Affiliation(s)
- Sakineh Hajebi
- Department of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| | - Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | | | - Sepideh Ahmadi
- Student Research Committee, Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Division of Diseases, Advanced Technologies Research Group, Tehran, Iran
| | - Mohammad Rabiee
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Hossein Roghani-Mamaqani
- Department of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| | | | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, USA; Department of Dermatology, Harvard Medical School, Boston, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, USA.
| |
Collapse
|
20
|
Najafi F, Salami-Kalajahi M, Roghani-Mamaqani H, Kahaie-Khosrowshahi A. Effect of grafting ratio of poly(propylene imine) dendrimer onto gold nanoparticles on the properties of colloidal hybrids, their DOX loading and release behavior and cytotoxicity. Colloids Surf B Biointerfaces 2019; 178:500-507. [DOI: 10.1016/j.colsurfb.2019.03.050] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/15/2019] [Accepted: 03/22/2019] [Indexed: 10/27/2022]
|
21
|
Nikravan G, Haddadi-Asl V, Salami-Kalajahi M. Stimuli-responsive DOX release behavior of cross-linked poly(acrylic acid) nanoparticles. E-POLYMERS 2019. [DOI: 10.1515/epoly-2019-0021] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AbstractCross-linked poly(acrylic acid) nanoparticles were synthesized via distillation precipitation polymerization of acrylic acid and ethylene glycol dimethacrylate withdifferent molar ratios. Spherical nanoparticles with diameters between 75 and 122 nm were synthesized and exhibited temperature and pH-responsive behaviors. However, this behavior was less pronounced for samples with higher cross-linking degrees. The potential of all nanoparticles as carriers for controlled release of doxorubicin (DOX) anti-cancer drug was examined at pH values of 1.2, 5.3 and 7.4. An obvious alleviation in burst release behavior and the amount of cumulative drug release was seen for all nanoparticles as the pH of the medium and the cross-linking degree of nanoparticle increased. Also kinetics of drug release was studied using mathematical models of zero-order, first-order, Higuchi, Korsmeyer-Peppas and Hixson-Crowell, where Higuchi and Korsmeyer-Peppas models best defined the kinetics of drug release.
Collapse
Affiliation(s)
- Goolia Nikravan
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - Vahid Haddadi-Asl
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - Mehdi Salami-Kalajahi
- Department of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| |
Collapse
|
22
|
Abdollahi A, Roghani-Mamaqani H, Razavi B, Salami-Kalajahi M. The light-controlling of temperature-responsivity in stimuli-responsive polymers. Polym Chem 2019. [DOI: 10.1039/c9py00890j] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Light-controlling of phase separation in temperature-responsive polymer solutions by using light-responsive materials for reversible controlling physical and chemical properties of the media with an out-of-system stimulus with tunable intensity.
Collapse
Affiliation(s)
- Amin Abdollahi
- Faculty of Polymer Engineering
- Sahand University of Technology
- Tabriz
- Iran
| | - Hossein Roghani-Mamaqani
- Faculty of Polymer Engineering
- Sahand University of Technology
- Tabriz
- Iran
- Institute of Polymeric Materials
| | - Bahareh Razavi
- Faculty of Polymer Engineering
- Sahand University of Technology
- Tabriz
- Iran
| | - Mehdi Salami-Kalajahi
- Faculty of Polymer Engineering
- Sahand University of Technology
- Tabriz
- Iran
- Institute of Polymeric Materials
| |
Collapse
|
23
|
Abdollahi A, Sahandi-Zangabad K, Roghani-Mamaqani H. Rewritable Anticounterfeiting Polymer Inks Based on Functionalized Stimuli-Responsive Latex Particles Containing Spiropyran Photoswitches: Reversible Photopatterning and Security Marking. ACS APPLIED MATERIALS & INTERFACES 2018; 10:39279-39292. [PMID: 30379526 DOI: 10.1021/acsami.8b14865] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Increase of safety in security documents by using anticounterfeiting inks based on fluorochromic and photochromic compounds has attracted a great deal of attention in the recent years. Herein, we developed novel functionalized stimuli-responsive latex particles containing spiropyran (1 wt %) by semicontinuous emulsifier-free emulsion polymerization, which are usable as anticounterfeiting inks for marking on security documents and also photopatterning on cellulosic papers. The size and morphology of the latex particles were characterized by scanning electron microscopy and dynamic light scattering and their functionality was characterized by Fourier-transform infrared spectroscopy. All the stimuli-responsive latexes are composed of spherical particles with different hydroxyl, epoxy, and carboxylic acid functional groups, and the size of the particles varies in the range of 400-900 nm. Additionally, the latex particles undergo a remarkable light-induced size variation (aggregation-disaggregation) upon UV illumination (365 nm), depending on the functional group type, as a result of π-π stacking interactions and also electrostatic attractions between the different particles. The photochromic behavior, kinetics of the SP ⇌ MC isomerization, photoswitchability, and photofatigue-resistant characteristics of the prepared latexes were extensively investigated. The results display that the photochromic behavior and SP ⇌ MC isomerization can significantly be influenced by the polar interactions between the functional groups and MC molecules. As a novel application, the prepared stimuli-responsive latexes were used as anticounterfeiting inks for writing on cellulosic paper and also security marking on several monies, where the written phrase displayed red fluorescence emission and coloration under and after UV illumination (365 nm), respectively. Additionally, the latexes were sprayed on cellulosic papers to prepare stimuli-responsive papers for investigation of their photopatterning ability under UV irradiation and different masking. The presence of functional groups and large particle sizes are the main effective factors for stabilization of the latex particles on cellulosic papers. This is the first report on application of functionalized stimuli-responsive latex particles containing spiropyran as anticounterfeiting inks for security marking and photopatterning on cellulosic papers, directly and without using further additives.
Collapse
Affiliation(s)
- Amin Abdollahi
- Department of Polymer Engineering , Sahand University of Technology , P.O. Box 51335-1996, Tabriz 51368 , Iran
| | - Keyvan Sahandi-Zangabad
- Department of Polymer Engineering , Sahand University of Technology , P.O. Box 51335-1996, Tabriz 51368 , Iran
| | - Hossein Roghani-Mamaqani
- Department of Polymer Engineering , Sahand University of Technology , P.O. Box 51335-1996, Tabriz 51368 , Iran
| |
Collapse
|
24
|
Pirayesh A, Salami-Kalajahi M, Roghani-Mamaqani H, Najafi F. Polysulfide Polymers: Synthesis, Blending, Nanocomposites, and Applications. POLYM REV 2018. [DOI: 10.1080/15583724.2018.1492616] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Amin Pirayesh
- Department of Polymer Engineering, Sahand University of Technology, Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, Tabriz, Iran
| | - Mehdi Salami-Kalajahi
- Department of Polymer Engineering, Sahand University of Technology, Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, Tabriz, Iran
| | - Hossein Roghani-Mamaqani
- Department of Polymer Engineering, Sahand University of Technology, Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, Tabriz, Iran
| | - Faezeh Najafi
- Department of Polymer Engineering, Sahand University of Technology, Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, Tabriz, Iran
| |
Collapse
|
25
|
Fallahi-Sambaran M, Salami-Kalajahi M, Dehghani E, Abbasi F. Investigation of different core-shell toward Janus morphologies by variation of surfactant and feeding composition: A study on the kinetics of DOX release. Colloids Surf B Biointerfaces 2018; 170:578-587. [PMID: 29975906 DOI: 10.1016/j.colsurfb.2018.06.064] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 06/10/2018] [Accepted: 06/29/2018] [Indexed: 11/28/2022]
Abstract
Composite particles with two individual hydrophilic parts were synthesized via seeded emulsion polymerization. As first part, nearly-monodisperse ethylene glycol dimethacrylate (EGDMA)-crosslinked poly(acrylic acid) (PAA) particles were synthesized by distillation precipitation polymerization (DPP). These particles were used as seeds in emulsion polymerization of 2-(dimethylamino)ethyl methacrylate (DMAEMA). Effects of type of surfactant, monomers/seed weight ratio and amount of shell crosslinker on the synthesized composite particles' morphology were studied. Different morphologies consisting of core-shell, Janus type, raspberry-like and porous core-shell structures were investigated by variations of polymerization parameters. Different structures were chosen as drug carriers and subjected to DOX loading and release system. Results showed that amount of drug loading and extent of release were strongly dependent on the structure of carriers whereas for all carriers, DOX was released more rapid. Kinetics of release was evaluated by different mathematical models to investigate the release mechanism through composite particles. Results showed that only Korsmeyer-Peppas model fitted the drug release data and other ones were inappropriate in this field.
Collapse
Affiliation(s)
- Mehrab Fallahi-Sambaran
- Department of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| | - Mehdi Salami-Kalajahi
- Department of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran.
| | - Elham Dehghani
- Department of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| | - Farhang Abbasi
- Department of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| |
Collapse
|
26
|
Dehghani E, Salami-Kalajahi M, Roghani-Mamaqani H. Simultaneous two drugs release form Janus particles prepared via polymerization-induced phase separation approach. Colloids Surf B Biointerfaces 2018; 170:85-91. [PMID: 29894836 DOI: 10.1016/j.colsurfb.2018.05.067] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/23/2018] [Accepted: 05/29/2018] [Indexed: 01/06/2023]
Abstract
Seeded emulsion polymerization of 2-dimethylaminoethylamino methacrylate (DMAEMA) was carried out using monodispersed poly(2-hydroxyehtyl methacrylate) (PHEMA) seeds to produce Janus particles. Three feeding approaches were used comprising one together, rest and continuous feeding methods to investigate different morphologies. However, FE-SEM results showed that all feeding approaches yielded dumbbell-like Janus particles. Furthermore, snowman-like Janus particles were obtained via seeded distillation precipitation polymerization (DPP). It is shown that minimizing the total interfacial free energy alongside difference in solubility parameters of Janus domains are responsible for obtained morphologies. Two different morphologies (dumbbell-like and snowman-like) were chosen as carriers of ibuprofen and DOX simultaneously. Also, simultaneous release of two drugs were investigated in different conditions. Dumbbell-like Janus particles showed higher ibuprofen loading whereas DOX was more loaded onto snowman-like Janus particles. Also, DOX was released more rapidly through Janus particles at different pH values and both types of Janus particles showed similar drugs release behaviors.
Collapse
Affiliation(s)
- Elham Dehghani
- Department of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| | - Mehdi Salami-Kalajahi
- Department of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran.
| | - Hossein Roghani-Mamaqani
- Department of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran.
| |
Collapse
|
27
|
Mazloomi-Rezvani M, Salami-Kalajahi M, Roghani-Mamaqani H. Fabricating core (Au)-shell (different stimuli-responsive polymers) nanoparticles via inverse emulsion polymerization: Comparing DOX release behavior in dark room and under NIR lighting. Colloids Surf B Biointerfaces 2018; 166:144-151. [DOI: 10.1016/j.colsurfb.2018.03.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 01/05/2023]
|
28
|
Nikravan G, Haddadi-Asl V, Salami-Kalajahi M. Synthesis of dual temperature – and pH-responsive yolk-shell nanoparticles by conventional etching and new deswelling approaches: DOX release behavior. Colloids Surf B Biointerfaces 2018; 165:1-8. [DOI: 10.1016/j.colsurfb.2018.02.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/04/2018] [Accepted: 02/06/2018] [Indexed: 01/21/2023]
|
29
|
Stimuli-responsive behavior of smart copolymers-grafted magnetic nanoparticles: Effect of sequence of copolymer blocks. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.02.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
30
|
Barman SR, Nain A, Jain S, Punjabi N, Mukherji S, Satija J. Dendrimer as a multifunctional capping agent for metal nanoparticles for use in bioimaging, drug delivery and sensor applications. J Mater Chem B 2018; 6:2368-2384. [DOI: 10.1039/c7tb03344c] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Various strategies (single & multi-pot) to synthesize dendrimer-coated metal nanoparticles and their exploration in various biomedical applications.
Collapse
Affiliation(s)
| | - Amit Nain
- School of Biosciences and Technology
- VIT Vellore
- India
| | - Saumey Jain
- School of Biosciences and Technology
- VIT Vellore
- India
| | - Nirmal Punjabi
- Department of Biosciences and Bioengineering
- IIT Bombay
- Mumbai 400076
- India
| | - Soumyo Mukherji
- Department of Biosciences and Bioengineering
- IIT Bombay
- Mumbai 400076
- India
| | | |
Collapse
|
31
|
Mazloomi‐Rezvani M, Salami‐Kalajahi M, Roghani‐Mamaqani H, Pirayesh A. Effect of surface modification with various thiol compounds on colloidal stability of gold nanoparticles. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.4079] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mahsa Mazloomi‐Rezvani
- Department of Polymer Engineering, and Institute of Polymeric MaterialsSahand University of Technology PO Box 51335‐1996 Tabriz Iran
| | - Mehdi Salami‐Kalajahi
- Department of Polymer Engineering, and Institute of Polymeric MaterialsSahand University of Technology PO Box 51335‐1996 Tabriz Iran
| | - Hossein Roghani‐Mamaqani
- Department of Polymer Engineering, and Institute of Polymeric MaterialsSahand University of Technology PO Box 51335‐1996 Tabriz Iran
| | - Amin Pirayesh
- Department of Polymer Engineering, and Institute of Polymeric MaterialsSahand University of Technology PO Box 51335‐1996 Tabriz Iran
| |
Collapse
|
32
|
Modarresi-Saryazdi SM, Haddadi-Asl V, Salami-Kalajahi M. N,N'-methylenebis(acrylamide)-crosslinked poly(acrylic acid) particles as doxorubicin carriers: A comparison between release behavior of physically loaded drug and conjugated drug via acid-labile hydrazone linkage. J Biomed Mater Res A 2017; 106:342-348. [DOI: 10.1002/jbm.a.36240] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/03/2017] [Accepted: 09/14/2017] [Indexed: 12/24/2022]
Affiliation(s)
| | - Vahid Haddadi-Asl
- Department of Polymer Engineering and Color Technology; Amirkabir University of Technology; Tehran P.O. Box 15875-4413 Iran
| | - Mehdi Salami-Kalajahi
- Department of Polymer Engineering; Sahand University of Technology; Tabriz P.O. Box 51335-1996 Iran
- Institute of Polymeric Materials; Sahand University of Technology; Tabriz P.O. Box 51335-1996 Iran
| |
Collapse
|
33
|
Golshan M, Salami-Kalajahi M, Mirshekarpour M, Roghani-Mamaqani H, Mohammadi M. Synthesis and characterization of poly(propylene imine)-dendrimer-grafted gold nanoparticles as nanocarriers of doxorubicin. Colloids Surf B Biointerfaces 2017; 155:257-265. [PMID: 28433942 DOI: 10.1016/j.colsurfb.2017.04.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/20/2017] [Accepted: 04/11/2017] [Indexed: 11/18/2022]
Abstract
The aim of current work is synthesis 4th-generation-poly(propylene imine) (PPI)-dendrimer modified gold nanoparticles (Au-G4A) as nanocarriers for doxorubicin (DOX) and studying in vitro drug release kinetics from nanocarriers into different media. Accordingly, AuNPs were synthesized by reduction of chloroauric acid (HAuCl4) aqueous solution with trisodium citrate and modified with cysteamine to obtain amine-functionalized (Au-NH2) nanoparticles. Au-NH2 nanoparticles were used as multifunctional cores and participated in Michael addition of acrylonitrile and reduction process by lithium aluminum hydride (LAH) to synthesize Au-G4A nanoparticles. Also, peripheral primary amine groups of Au-G4A were conjugated with folic acid (FA) (Au-G4F) to study the bioconjugation effect on drug release behavior of nanostructures. Ultraviolet spectroscopy (UV-vis), atomic force microscopy (AFM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), and thermal gravimetric analysis (TGA) were used to approve the synthesis of different nanostructures. Finally, Au-G4A and Au-G4F samples were loaded with DOX and exposed to environments with different pH values to examine the release properties of nanostructures. Also, drug release kinetics was investigated by fitting of experimental data with different release models. As a result, synthesized dendritic structures showed Higuchi and Korsmeyer-Peppas models release behavior due to better solubility of drug in release media with respect to dendrimer cavities and drug release through polymeric matrix respectively.
Collapse
Affiliation(s)
- Marzieh Golshan
- Department of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| | - Mehdi Salami-Kalajahi
- Department of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran.
| | - Mina Mirshekarpour
- Department of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| | - Hossein Roghani-Mamaqani
- Department of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran.
| | - Maryam Mohammadi
- Department of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| |
Collapse
|