1
|
Wang Y, Zhang W, Zhu P, You W, Xue X, Wang R, Ma Y, Sun WH. Intensive Cycloalkyl-Fused Pyridines for Aminopyridyl-Zinc-Heteroimidazoles Achieving High Efficiency toward the Ring-Opening Polymerization of Lactides. Molecules 2024; 29:4150. [PMID: 39274998 PMCID: PMC11397438 DOI: 10.3390/molecules29174150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/23/2024] [Accepted: 08/30/2024] [Indexed: 09/16/2024] Open
Abstract
The model precatalyst sp3- and sp2-N dinitrogen-coordinated zinc-heteroimidazole has been used as an efficient catalyst for the ring-opening polymerization of cyclic esters. Subsequent to our exceptional active 5,6,7-trihydroquinolin-8-amine-zinc catalysts for the ring-opening polymerization (ROP) of ε-caprolactone, various pyridine-fused cycloalkanones (ring size from five to eight) are developed for the correspondent fused amine-pyridine derivatives and their zinc-heteroimidazole chloride complexes Zn1-Zn8 (LZnCl2) bearing N-diphenylphosphinoethyl pendants. Activated with two equivalents of LiN(SiMe3)2, the title zinc complexes efficiently promote the ROP of L-lactide (L-LA) in situ; among them, Zn4/2Li(NSiMe3)2 catalyzed 500 equivalent L-LA at 80 °C with 92% conversion in 5 min (TOF: 5520 h-1). Under the same conditions, the catalytic efficiency for the ROP of rac-LA by Zn1-Zn8/2Li(NSiMe3)2 was slightly lower than that for L-LA (highest TOF: 4440 h-1). In both cases, cyclooctyl-fused pyridyl-zinc complexes exhibited higher activity than others, while the cycloheptyl-fused zinc complexes showed the lowest activity. The microstructure analysis of the polymers showed they possessed a linear structure capped with CH3O as major and cyclic structure as minor. In this work, all the ligands and zinc complexes were well characterized by 1H/13C/31P NMR, FT-IR spectroscopy as well as elemental analysis.
Collapse
Affiliation(s)
- Yun Wang
- Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Science and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wenjuan Zhang
- Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Science and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Pengjiang Zhu
- Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Science and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wei You
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaopan Xue
- Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Science and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Rui Wang
- Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Science and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Yanping Ma
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wen-Hua Sun
- Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
2
|
Sagar S, Nath P, Ray A, Sarkar A, Panda TK. Crafting sustainable solutions: architecting biodegradable copolymers through controlled ring-opening copolymerization. Dalton Trans 2024; 53:12837-12866. [PMID: 38973394 DOI: 10.1039/d4dt01054j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Polylactic acid (PLA) is a biodegradable and biocompatible polymer with versatile applications in packaging and medicine. It is derived from lactic acid and thus represents an eco-friendly option sourced from renewable raw materials. Despite its advantages, PLA exhibits few drawbacks, such as brittleness and relatively high melting and glass transition temperatures. However, these limitations can be addressed through copolymerization with other monomers like ε-caprolactone (ε-CL), resulting in a composite material with improved physical properties. This paper comprehensively reviews achievements in PLA-PCL copolymerization using organometallic catalysts, discussing scientific findings and various copolymer architectures obtained, including random or block configurations. It also demonstrates various sustainable catalysts for achieving the required microstructure under mild reaction conditions without the aid of any external initiator.
Collapse
Affiliation(s)
- Shweta Sagar
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi - 502 284, Sangareddy, Telangana, India.
| | - Priyanku Nath
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi - 502 284, Sangareddy, Telangana, India.
| | - Aranya Ray
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi - 502 284, Sangareddy, Telangana, India.
| | - Alok Sarkar
- Momentive Performance Materials Pvt. Ltd, Survey No. 09, Hosur Road, Electronic City (West), Bangalore-560100, India
| | - Tarun K Panda
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi - 502 284, Sangareddy, Telangana, India.
| |
Collapse
|
3
|
Hughes JWJ, Babula DJ, Stowers-Veitch F, Yuan K, Uzelac M, Nichol GS, Ingleson MJ, Garden JA. NacNac-zinc-pyridonate mediated ε-caprolactone ROP. Dalton Trans 2023; 52:17767-17775. [PMID: 37981810 PMCID: PMC10696559 DOI: 10.1039/d3dt03344a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023]
Abstract
Herein we report the synthesis, isolation and polymerisation activity of two new zinc compounds based on a 2,6-diisopropylphenyl (Dipp) β-diiminate (NacNac) ligand framework with zinc also ligated by an amidate (2-pyridonate or 6-methyl-2-pyridonate) unit. The compounds crystallised as either monomeric (6-Me-2-pyridonate derivative) or dimeric (2-pyridonate) species, although both were found to be monomeric in solution via1H DOSY NMR spectroscopy, which was supported by DFT calculations. These observations suggest that both complexes initiate ring-opening polymerisation (ROP) through a single-site monometallic mechanism. High molecular weight poly ε-caprolactone (PCL) was achieved via exogenous initiator-free ROP conditions with both catalysts. An increase in the 2-pyridonate initiator steric bulk (6-Me- vs. 6-H-) resulted in an improved catalytic activity, facilitating complete monomer conversion within 1 h at 60 °C. Pyridonate end-groups were observed by MALDI-ToF mass spectrometry, contrasting with previous observations for DippNacNac-Zn acetate complexes (where no acetate end groups are observed), instead this more closely resembles the reactivity of DippNacNac-Zn alkoxide complexes in ROP (where RO end groups are observed). Additional major signals in the MALDI-ToF spectra were consistent with cyclic PCL species, which are attributed to back-biting ring-closing termination steps occuring in a process facilitated by the pyridonate unit being an effective leaving group. To the best of our knowledge, these complexes represent the first examples of pyridonate, and indeed amidate, initated ROP.
Collapse
Affiliation(s)
- Jack W J Hughes
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK.
| | - Dawid J Babula
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK.
| | | | - Kang Yuan
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK.
| | - Marina Uzelac
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK.
| | - Gary S Nichol
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK.
| | - Michael J Ingleson
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK.
| | - Jennifer A Garden
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK.
| |
Collapse
|
4
|
Glöckler E, Ghosh S, Schulz S. β-Diketiminate and β-Ketoiminate Metal Catalysts for Ring-Opening Polymerization of Cyclic Esters. POLYM REV 2022. [DOI: 10.1080/15583724.2022.2121837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Eduard Glöckler
- Institute for Inorganic Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Swarup Ghosh
- Institute for Inorganic Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Stephan Schulz
- Institute for Inorganic Chemistry, University of Duisburg-Essen, Essen, Germany
- Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Duisburg, Germany
| |
Collapse
|
5
|
Wang L, Lu Y, Zhang L, Fang H, Zhang X, Li Y. Synthesis, structures, and catalytic activity toward the ring-opening polymerization of ε-caprolactone of zinc complexes supported by β-diketiminate ligands with a large aryl group. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Chellali JE, Alverson AK, Robinson JR. Zinc Aryl/Alkyl β-diketiminates: Balancing Accessibility and Stability for High-Activity Ring-Opening Polymerization of rac-Lactide. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jonathan E. Chellali
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Alexander K. Alverson
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Jerome R. Robinson
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
7
|
Akintayo DC, Munzeiwa WA, Jonnalagadda SB, Omondi B. Influence of nuclearity and coordination geometry on the catalytic activity of Zn(II) carboxylate complexes in ring-opening polymerization of ε-caprolactone and lactides. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Stereoselective homo- and co-polymerization of lactides and ε-caprolactone catalysed by highly active racemic zinc(II) pyridyl complexes. TRANSIT METAL CHEM 2022. [DOI: 10.1007/s11243-022-00493-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Akintayo DC, Munzeiwa WA, Jonnalagadda SB, Omondi B. Ring-opening polymerization of cyclic esters by 3- and 4-pyridinyl Schiff base Zn(II) and Cu(II) paddlewheel complexes: kinetic, mechanistic and tacticity studies. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
10
|
Köhler M, Rinke P, Fiederling K, Görls H, Ueberschaar N, Schacher FH, Kretschmer R. Catalytic Activity of Various
β
‐Diketiminate Zinc Complexes toward the Ring‐Opening Polymerization of Caprolactone and Derivatives. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Moritz Köhler
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC) Friedrich Schiller University Jena Humboldtstrasse 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM) Friedrich Schiller University Jena Philosophenweg 7 07743 Jena Germany
| | - Philipp Rinke
- Institute of Inorganic and Analytical Chemistry (IAAC) Friedrich Schiller University Jena Humboldtstraße 8 07743 Jena Germany
| | - Kevin Fiederling
- Institute of Physical Chemistry and Abbe Center of Photonics Friedrich Schiller University Jena Helmholtzweg 4 07743 Jena Germany
| | - Helmar Görls
- Institute of Inorganic and Analytical Chemistry (IAAC) Friedrich Schiller University Jena Humboldtstraße 8 07743 Jena Germany
| | - Nico Ueberschaar
- Mass Spectrometry Platform Friedrich Schiller University Jena Humboldtstr. 8 07743 Jena Germany
| | - Felix Helmut Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC) Friedrich Schiller University Jena Humboldtstrasse 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM) Friedrich Schiller University Jena Philosophenweg 7 07743 Jena Germany
| | - Robert Kretschmer
- Jena Center for Soft Matter (JCSM) Friedrich Schiller University Jena Philosophenweg 7 07743 Jena Germany
- Institute of Inorganic and Analytical Chemistry (IAAC) Friedrich Schiller University Jena Humboldtstraße 8 07743 Jena Germany
| |
Collapse
|
11
|
Yu X, Wang Z, Han Z. Synthesis and Structural Characterisation of Dinuclear Aluminium Complexes Supported by NNO‐Tridentate Schiff‐Base Ligands and Their Catalysis in the Ring‐Opening Polymerisation of ϵ‐Caprolactone. ChemistrySelect 2021. [DOI: 10.1002/slct.202100635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Xiaofeng Yu
- School of Materials and Chemical Engineering University Bengbu 1866 Caoshan Road Anhui 233030 P. R. China
- Department of Chemistry University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 P. R. China
- Bengbu Product Quality and Inspection Institute 100 Anmin Road Bengbu Anhui 233030 P. R. China
| | - Zhongxia Wang
- Department of Chemistry University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 P. R. China
| | - Zhiyong Han
- Department of Chemistry University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 P. R. China
| |
Collapse
|
12
|
Li Y, Dang Y, Li D, Pan H, Zhang L, Wang L, Cao Z, Li Y. Zinc Complexes with an Ethylene-Bridged Bis(β-diketiminate) Ligand: Syntheses, Structures, and Applications as Catalysts in the Borylation of Aryl Iodides. Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yafei Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
| | - Yan Dang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
| | - Dawei Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
| | - Huifen Pan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
| | - Liang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
| | - Li Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
| | - Zhu Cao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
| | - Yahong Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
| |
Collapse
|
13
|
Nifant’ev I, Komarov P, Ovchinnikova V, Kiselev A, Minyaev M, Ivchenko P. Comparative Experimental and Theoretical Study of Mg, Al and Zn Aryloxy Complexes in Copolymerization of Cyclic Esters: The Role of the Metal Coordination in Formation of Random Copolymers. Polymers (Basel) 2020; 12:E2273. [PMID: 33023256 PMCID: PMC7600584 DOI: 10.3390/polym12102273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 11/16/2022] Open
Abstract
Homogeneity of copolymers is a general problem of catalytic coordination polymerization. In ring-opening polymerization of cyclic esters, the rational design of the catalyst is generally applied to solve this problem by the equalization of the reactivities of comonomers-however, it often leads to a reduction of catalytic activity. In the present paper, we studied the catalytic behavior of BnOH-activated complexes (ВНТ)Mg(THF)2nBu (1), (ВНТ)2AlMe (2) and [(ВНТ)ZnEt]2 (3), based on 2,6-di-tert-butyl-4-methylphenol (BHT-H) in homo- and copolymerization of L-lactide (lLA) and ε-caprolactone (εCL). Even at 1:5 lLA/εCL ratio Mg complex 1 catalyzed homopolymerization of lLA without involving εCL to the formation of the polymer backbone. On the contrary, Zn complex 3 efficiently catalyzed random lLA/εCL copolymerization; the presence of mono-lactate subunits in the copolymer chain clearly pointed to the transesterification mechanism of copolymer formation. Both epimerization and transesterification side processes were analyzed using the density functional theory (DFT) modeling that confirmed the qualitative difference in catalytic behavior of 1 and 3: Mg and Zn complexes demonstrated different types of preferable coordination on the PLA chain (k2 and k3, respectively) with the result that complex 3 catalyzed controlled εCL ROP/PLA transesterification, providing the formation of lLA/εCL copolymers that contain mono-lactate fragments separated by short oligo(εCL) chains. The best results in the synthesis of random lLA/εCL copolymers were obtained during experiments on transesterification of commercially available PLLA, the applicability of 3/BnOH catalyst in the synthesis of random copolymers of εCL with methyl glycolide, ethyl ethylene phosphonate and ethyl ethylene phosphate was also demonstrated.
Collapse
Affiliation(s)
- Ilya Nifant’ev
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1–3, 119991 Moscow, Russia
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, Leninsky Avenue 29, 119991 Moscow, Russia; (P.K.); (V.O.); (A.K.); (M.M.)
- Faculty of Chemistry, National Research University Higher School of Economics, Miasnitskaya Str. 20, 101000 Moscow, Russia
| | - Pavel Komarov
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, Leninsky Avenue 29, 119991 Moscow, Russia; (P.K.); (V.O.); (A.K.); (M.M.)
| | - Valeriya Ovchinnikova
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, Leninsky Avenue 29, 119991 Moscow, Russia; (P.K.); (V.O.); (A.K.); (M.M.)
| | - Artem Kiselev
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, Leninsky Avenue 29, 119991 Moscow, Russia; (P.K.); (V.O.); (A.K.); (M.M.)
- Faculty of Chemistry, National Research University Higher School of Economics, Miasnitskaya Str. 20, 101000 Moscow, Russia
| | - Mikhail Minyaev
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, Leninsky Avenue 29, 119991 Moscow, Russia; (P.K.); (V.O.); (A.K.); (M.M.)
- N.D. Zelinsky Institute of Organic Chemistry RAS, Leninsky pr. 47, 119991 Moscow, Russia
| | - Pavel Ivchenko
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1–3, 119991 Moscow, Russia
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, Leninsky Avenue 29, 119991 Moscow, Russia; (P.K.); (V.O.); (A.K.); (M.M.)
| |
Collapse
|
14
|
Zhu D, Li Y, Chen J, Song X. L2Zn and LZnX complexes bearing half-salphen ligands and their catalysis of ring-opening polymerization of ε -caprolactone. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Shao J, Zhou H, Wang Y, Luo Y, Yao Y. Lanthanum complexes stabilized by a pentadentate Schiff-base ligand: synthesis, characterization, and reactivity in statistical copolymerization of ε-caprolactone and l-lactide. Dalton Trans 2020; 49:5842-5850. [PMID: 32301451 DOI: 10.1039/d0dt00179a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Developing catalysts that are capable of catalyzing the copolymerization of ε-caprolactone and l-lactide to give random CL/LA copolymers is of great importance. One-pot reaction of La[N(SiMe3)2]3 with 1 equiv. of LH2 (LH2 = NH(CH2CH2N[double bond, length as m-dash]CHC6H2-3,5-tBu2-2-OH)2) in THF at room temperature, followed by protolysis with one equivalent amount of ROH (R = C6H2-2,6-tBu2-4-CH3, tBu, iPr, Bn, and Et) at 60 °C gave the mono-Schiff-base-ligated lanthanum aryloxide complex LLa(OC6H2-2,6-tBu2-4-CH3)(THF) (1), and lanthanum alkyloxide complexes LLaOtBu(THF) (2), [LLaOiPr]2 (3), [LLaOBn]2 (4), and [LLaOEt]2 (5) in 59-69% isolated yields. These lanthanum complexes were capable of initiating the homopolymerization of l-lactide and rac-lactide with extremely high activity, and the copolymerization of ε-caprolactone (ε-CL) and l-lactide (l-LA) to give statistical CL/LA copolymers via a transesterification reaction.
Collapse
Affiliation(s)
- Jingjing Shao
- College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | | | | | | | | |
Collapse
|
16
|
Ghosh S, Wölper C, Tjaberings A, Gröschel AH, Schulz S. Syntheses, structures and catalytic activity of tetranuclear Mg complexes in the ROP of cyclic esters under industrially relevant conditions. Dalton Trans 2020; 49:375-387. [PMID: 31829382 DOI: 10.1039/c9dt04359d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Tetranuclear magnesium imino(phenolate) complexes Mg4(L1–4)4 are excellent catalysts for the ROP of bulk rac-lactide and ε-caprolactone under industrially relevant conditions.
Collapse
Affiliation(s)
- Swarup Ghosh
- Faculty of Chemistry
- University of Duisburg-Essen and Center for Nanointegration Duisburg-Essen (CENIDE)
- D-45141 Essen
- Germany
| | - Christoph Wölper
- Faculty of Chemistry
- University of Duisburg-Essen and Center for Nanointegration Duisburg-Essen (CENIDE)
- D-45141 Essen
- Germany
| | - Alexander Tjaberings
- Faculty of Chemistry
- University of Duisburg-Essen and Center for Nanointegration Duisburg-Essen (CENIDE)
- NanoEnergieTechnikZentrum
- 47057 Duisburg
- Germany
| | - André H. Gröschel
- Faculty of Chemistry
- University of Duisburg-Essen and Center for Nanointegration Duisburg-Essen (CENIDE)
- NanoEnergieTechnikZentrum
- 47057 Duisburg
- Germany
| | - Stephan Schulz
- Faculty of Chemistry
- University of Duisburg-Essen and Center for Nanointegration Duisburg-Essen (CENIDE)
- D-45141 Essen
- Germany
| |
Collapse
|
17
|
Phetsuk S, Molloy R, Nalampang K, Meepowpan P, Topham PD, Tighe BJ, Punyodom W. Physical and thermal properties of
l‐
lactide/ϵ‐caprolactone copolymers: the role of microstructural design. POLYM INT 2019. [DOI: 10.1002/pi.5940] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Sawarot Phetsuk
- Department of Chemistry, Faculty of ScienceChiang Mai University Chiang Mai Thailand
| | - Robert Molloy
- Department of Chemistry, Faculty of ScienceChiang Mai University Chiang Mai Thailand
- Center of Excellence in Materials Science and Technology, Chiang Mai University Chiang Mai Thailand
| | - Kanarat Nalampang
- Department of Chemistry, Faculty of ScienceChiang Mai University Chiang Mai Thailand
- Center of Excellence in Materials Science and Technology, Chiang Mai University Chiang Mai Thailand
| | - Puttinan Meepowpan
- Department of Chemistry, Faculty of ScienceChiang Mai University Chiang Mai Thailand
- Center of Excellence in Materials Science and Technology, Chiang Mai University Chiang Mai Thailand
| | - Paul D Topham
- Aston Institute of Materials Research, Aston University Birmingham UK
| | - Brian J Tighe
- Chemical Engineering and Applied ChemistryAston University Birmingham UK
| | - Winita Punyodom
- Department of Chemistry, Faculty of ScienceChiang Mai University Chiang Mai Thailand
- Center of Excellence in Materials Science and Technology, Chiang Mai University Chiang Mai Thailand
| |
Collapse
|
18
|
D'Auria I, D'Alterio MC, Tedesco C, Pellecchia C. Tailor-made block copolymers of l-, d- and rac-lactides and ε-caprolactone via one-pot sequential ring opening polymerization by pyridylamidozinc(ii) catalysts. RSC Adv 2019; 9:32771-32779. [PMID: 35529720 PMCID: PMC9073191 DOI: 10.1039/c9ra07133d] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/04/2019] [Indexed: 12/17/2022] Open
Abstract
Three-coordinated Zn(ii) complexes bearing sterically encumbered bidentate monoanionic [N,N -] pyridylamido ligands efficiently catalyze the ring opening polymerization of lactide (LA) and ε-caprolactone (CL). Owing to the polymerization controlled nature and high rate, precise stereodiblock poly(LLA-b-DLA) with different block lengths can be easily produced by one-pot sequential monomer addition at room temperature in short reaction times. NMR, SEC and DSC analyses confirm the production of highly isotactic diblock copolymers which crystallize in the high melting stereocomplex phase. Stereo-triblock and tetrablock copolymers of l-LA, d-LA and rac-LA have been synthesized similarly. Finally, a diblock poly(CL-b-LA) has been easily obtained by sequential addition of ε-caprolactone and lactide under mild conditions.
Collapse
Affiliation(s)
- Ilaria D'Auria
- Dipartimento di Chimica e Biologia "A. Zambelli", Università Degli Studi di Salerno Via Giovanni Paolo II 132 84084 Fisciano SA Italy
| | | | - Consiglia Tedesco
- Dipartimento di Chimica e Biologia "A. Zambelli", Università Degli Studi di Salerno Via Giovanni Paolo II 132 84084 Fisciano SA Italy
| | - Claudio Pellecchia
- Dipartimento di Chimica e Biologia "A. Zambelli", Università Degli Studi di Salerno Via Giovanni Paolo II 132 84084 Fisciano SA Italy
| |
Collapse
|
19
|
A series of aluminium complexes based on a β-diketiminate ligand: Synthesis, structures and their application to ring-opening polymerization of ε-caprolactone. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.03.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
20
|
Chumsaeng P, Haesuwannakij S, Virachotikul A, Phomphrai K. Random copolymerization of
l
‐lactide and ε‐caprolactone by aluminum alkoxide complexes supported by N
2
O
2
bis(phenolate)‐amine ligands. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/pola.29425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Phongnarin Chumsaeng
- Department of Chemistry, Faculty of ScienceMahidol University Ratchathewi, Bangkok 10400 Thailand
| | - Setsiri Haesuwannakij
- Department of Materials Science and Engineering, School of Molecular Science and EngineeringVidyasirimedhi Institute of Science and Technology (VISTEC) Wang Chan, Rayong 21210 Thailand
| | - Arnut Virachotikul
- Department of Materials Science and Engineering, School of Molecular Science and EngineeringVidyasirimedhi Institute of Science and Technology (VISTEC) Wang Chan, Rayong 21210 Thailand
| | - Khamphee Phomphrai
- Department of Materials Science and Engineering, School of Molecular Science and EngineeringVidyasirimedhi Institute of Science and Technology (VISTEC) Wang Chan, Rayong 21210 Thailand
- Research Network of NANOTEC‐VISTEC on Nanotechnology for EnergyVidyasirimedhi Institute of Science and Technology Wang Chan, Rayong 21210 Thailand
| |
Collapse
|
21
|
Hu Q, Jie S, Braunstein P, Li BG. Highly active tridentate amino-phenol zinc complexes for the catalytic ring-opening polymerization of ε-caprolactone. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2018.12.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
22
|
Chen XL, Wang B, Pan L, Li YS. Homoleptic, bis-ligated magnesium complexes for ring-opening polymerization of lactide and lactones: Synthesis, structure, polymerization behavior and mechanism studies. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4770] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Xiao-Lu Chen
- Tianjin Key Lab of Composite and Functional Materials, School of Materials Science and Engineering; Tianjin University; Tianjin 300072 China
| | - Bin Wang
- Tianjin Key Lab of Composite and Functional Materials, School of Materials Science and Engineering; Tianjin University; Tianjin 300072 China
| | - Li Pan
- Tianjin Key Lab of Composite and Functional Materials, School of Materials Science and Engineering; Tianjin University; Tianjin 300072 China
| | - Yue-Sheng Li
- Tianjin Key Lab of Composite and Functional Materials, School of Materials Science and Engineering; Tianjin University; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300072 China
| |
Collapse
|
23
|
Wen S, Li Y, Chen W, Lei Y, Luo C, Hou Y. Synthesis and properties of polylactide terpolymers P(LLA‐TMC‐GA) catalyzed by zirconium (IV) acetylacetonate. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.4177] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Shaohua Wen
- Shaanxi Key Laboratory of Optoelectronic Functional Materials and DevicesXi’an Technological University Xi’an 710021 China
- School of Materials Science and Chemical EngineeringXi’an Technological University Xi’an 710021 China
| | - Yongfei Li
- Shaanxi Key Laboratory of Optoelectronic Functional Materials and DevicesXi’an Technological University Xi’an 710021 China
- School of Materials Science and Chemical EngineeringXi’an Technological University Xi’an 710021 China
| | - Weixing Chen
- Shaanxi Key Laboratory of Optoelectronic Functional Materials and DevicesXi’an Technological University Xi’an 710021 China
- School of Materials Science and Chemical EngineeringXi’an Technological University Xi’an 710021 China
| | - Yaping Lei
- Shaanxi Key Laboratory of Optoelectronic Functional Materials and DevicesXi’an Technological University Xi’an 710021 China
- School of Materials Science and Chemical EngineeringXi’an Technological University Xi’an 710021 China
| | - Chunyan Luo
- Shaanxi Key Laboratory of Optoelectronic Functional Materials and DevicesXi’an Technological University Xi’an 710021 China
- School of Materials Science and Chemical EngineeringXi’an Technological University Xi’an 710021 China
| | - Yonggang Hou
- Shaanxi Key Laboratory of Optoelectronic Functional Materials and DevicesXi’an Technological University Xi’an 710021 China
- School of Materials Science and Chemical EngineeringXi’an Technological University Xi’an 710021 China
| |
Collapse
|
24
|
D'Auria I, Tedesco C, Mazzeo M, Pellecchia C. New homoleptic bis(pyrrolylpyridiylimino) Mg(ii) and Zn(ii) complexes as catalysts for the ring opening polymerization of cyclic esters via an "activated monomer" mechanism. Dalton Trans 2017; 46:12217-12225. [PMID: 28875186 DOI: 10.1039/c7dt02445b] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of MgBu2 and ZnEt2 or Zn{N[Si(CH3)3]2}2 with a tridentate monoanionic pyrrolylpyridiylimino [N-,N,N] proligand gave homoleptic species, as exclusive products, in high yields. The complexes were characterized in solution by 1D and 2D NMR analysis and by single crystal X-ray crystallography. The new homoleptic complexes were tested as initiators in the polymerization of ε-caprolactone and lactide in the presence of an exogenous alcohol. For both complexes, the polymerizations proceed via an "activated monomer" mechanism that, in the case of the magnesium complex, was correlated with the coordinative flexibility of the ligands, resulting in extremely high productivities under mild conditions.
Collapse
Affiliation(s)
- Ilaria D'Auria
- Dipartimento di Chimica e Biologia "A. Zambelli", Università di Salerno, via Giovanni Paolo II 132 - 84084, Fisciano, SA, Italy. and Consorzio Interuniversitario Reattività Chimica e Catalisi (CIRCC), via Celso Ulpiani 27 - 70126, Bari, Italy
| | - Consiglia Tedesco
- Dipartimento di Chimica e Biologia "A. Zambelli", Università di Salerno, via Giovanni Paolo II 132 - 84084, Fisciano, SA, Italy.
| | - Mina Mazzeo
- Dipartimento di Chimica e Biologia "A. Zambelli", Università di Salerno, via Giovanni Paolo II 132 - 84084, Fisciano, SA, Italy. and Consorzio Interuniversitario Reattività Chimica e Catalisi (CIRCC), via Celso Ulpiani 27 - 70126, Bari, Italy
| | - Claudio Pellecchia
- Dipartimento di Chimica e Biologia "A. Zambelli", Università di Salerno, via Giovanni Paolo II 132 - 84084, Fisciano, SA, Italy. and Consorzio Interuniversitario Reattività Chimica e Catalisi (CIRCC), via Celso Ulpiani 27 - 70126, Bari, Italy
| |
Collapse
|