1
|
Saberi Afshar S, Mohammadi Ziarani G, Mohajer F, Badiei A. Fumed-Si-Pr-PNS as a Photoluminescence sensor for the Detection of Hg 2+ in Aqueous Media. J Fluoresc 2024; 34:2105-2113. [PMID: 37707711 DOI: 10.1007/s10895-023-03417-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/24/2023] [Indexed: 09/15/2023]
Abstract
Fumed silica was functionalized by piperazine followed by the reaction with 2- naphthalenesulfonyl chloride to prepare Fumed-Si-Pr-Piperazine-Naphthalenesulfonyl chloride (Fumed-Si-Pr-PNS), which was characterized to demonstrate the effective attachment on the surface of fumed silica. The optical sensing ability of Fumed-Si-Pr-PNS was studied via diverse metal ions in H2O solution by photoluminescence spectroscopy. The results showed that Fumed-Si-Pr-PNS detected selectively Hg2+ ions. The prepared sensor showed almost high absorption at different pH for Hg ion. After drawing various diagrams, The detection limits were calculated at about 12.45 × 10-6 M for Hg2+.
Collapse
Affiliation(s)
- Sepideh Saberi Afshar
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Tehran, Iran
| | | | - Fatemeh Mohajer
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Tehran, Iran
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
2
|
Khan D, Shaily. Recent advances in isatin-based chemosensors: A comprehensive review. LUMINESCENCE 2024; 39:e4756. [PMID: 38838075 DOI: 10.1002/bio.4756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/12/2024] [Accepted: 03/28/2024] [Indexed: 06/07/2024]
Abstract
A comprehensive review presents an illuminating exploration of the vast potential of isatin, an easily accessible organic compound. This review is a valuable resource, offering a concise yet comprehensive account of the recent breakthroughs in isatin applications in medicinal chemistry, fluorescence sensing, and organic synthesis. Moreover, it dives into the exciting advancements in isatin-based chemosensors, demonstrating their remarkable ability to detect and recognize diverse cations and anions with exceptional precision. Researchers and scientists in the fields of sensing and organic chemistry will find this review indispensable for sparking innovation and developing cutting-edge technologies with significant real-world impact.
Collapse
Affiliation(s)
- Danish Khan
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, India
| | - Shaily
- Department of Chemistry, D. B. S. (P.G.) College, Dehradun, India
| |
Collapse
|
3
|
Souto FT, Machado VG. Hybrid films composed of ethyl(hydroxyethyl)cellulose and silica xerogel functionalized with a fluorogenic chemosensor for the detection of mercury in water. Carbohydr Polym 2023; 304:120480. [PMID: 36641189 DOI: 10.1016/j.carbpol.2022.120480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Ethyl(hydroxyethyl)cellulose (EHEC) and a silica-based xerogel (SBX) were functionalized with a (18-crown-6)-styrylpyridine precursor (1) to obtain the modified polymers EHEC-1 and SBX-1, respectively. Films were obtained and the resulting materials were used as fluorogenic devices for the detection of Hg2+ in water. The films produced from EHEC-1 showed high water retention, making it difficult to apply as a reusable optical chemosensor. Since SBXs are recognized in the literature for their hydrophobicity, a hybrid film composed of EHEC and SBX-1 which did not show water retention was produced and characterized. This system showed rapid response time, outstanding selectivity compared to several other studied metal ions, and sensitivity for the detection of Hg2+ in water. The detection limit for this material using fluorescence technique was 2 ppb (∼10-8 mol L-1). The reversibility of the complex formed between EHEC-SBX-1 film and Hg2+ was demonstrated by the addition of cysteine to the medium. The result obtained also allowed the assembly of INHIBIT and IMPLICATION molecular logic gates, using Hg2+ and cysteine as inputs. The results described in this article have important significance in the development of novel reversible fluorogenic chemosensors and adsorbent materials for the effective removal of Hg2+ ions.
Collapse
Affiliation(s)
- Francielly Thaís Souto
- Departamento de Química, Universidade Federal de Santa Catarina, UFSC, Florianópolis, SC 88040-900, Brazil
| | - Vanderlei Gageiro Machado
- Departamento de Química, Universidade Federal de Santa Catarina, UFSC, Florianópolis, SC 88040-900, Brazil.
| |
Collapse
|
4
|
Mohajer F, Soltani HasanKiadeh F, Mohammadi Ziarani G, Zandiyeh M, Badiei A, Varma RS. Greener assembly of Pyrano[3,4-b]pyran derivative as a novel Hg2+ ion chemosensor. OPTICAL MATERIALS: X 2022; 15:100182. [DOI: 10.1016/j.omx.2022.100182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
|
5
|
Ziarani GM, Khademi M, Mohajer F, Badiei A. The Application of Modified SBA-15 as a Chemosensor. CURRENT NANOMATERIALS 2022; 7:4-24. [DOI: 10.2174/2405461506666210420132630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/13/2021] [Accepted: 03/04/2021] [Indexed: 06/17/2023]
Abstract
:
The Santa Barbara Amorphous (SBA-15), with a large surface area covered with abundant
Si-OH active groups on the walls of its pores, can be modified with various organic compounds
to build organic-inorganic hybrid materials, which can be used as a catalyst in organic reactions,
drug delivery systems, nano sorbent due to its high capacity for removing heavy metals in
waste water and as chemosensors for ions. Tunable and straight channels of SBA-15 facilitate the
entrance and diffusion of ions through the channels. This paper presents a review of the past five
years of literature covering the application of SBA-15 as an ions chemosensor in the liquid and
gaseous media.
Collapse
Affiliation(s)
- Ghodsi Mohammadi Ziarani
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, Tehran, Iran
| | - Mahdieh Khademi
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, Tehran, Iran
| | - Fatemeh Mohajer
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, Tehran, Iran
| | - Alireza Badiei
- School of
Chemistry, Collage of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
6
|
A Fluorescent Chemosensor Based on Functionalized Nanoporous Silica (SBA-15 SBA-IC-MN) for Detection of Hg2+ in Aqueous Media. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-021-05518-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Mohammadi Ziarani G, Ebrahimi Z, Mohajer F, Badiei A. A Fluorescent Chemosensor Based on Functionalized Nanoporous Silica (SBA-15 SBA-IC-MN) for Detection of Hg <sup>2+</sup> in Aqueous Media. SSRN ELECTRONIC JOURNAL 2021. [DOI: 10.2139/ssrn.3984958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
|
8
|
Paul L, Mukherjee S, Chatterjee S, Bhaumik A, Das D. Organically Functionalized Mesoporous SBA-15 Type Material Bearing Fluorescent Sites for Selective Detection of Hg II from Aqueous Medium. ACS OMEGA 2019; 4:17857-17863. [PMID: 31681894 PMCID: PMC6822104 DOI: 10.1021/acsomega.9b02631] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
Hg(II) contamination in water resources is one of the major health issues in keeping the purity standard of the municipal water supply. Herein, we report a new mesoporous sensor probe material SBA-ABZ-PEA having a 2D-hexagonally ordered mesoporous framework bearing covalently bonded fluorescent sites, and this has been synthesized through a two-step post-synthesis grafting route. A pure silica mesoporous SBA-15 material has been functionalized with (3-chloropropyl)triethoxysilane (ClPTES) to obtain chloro-functionalized SBA-15, which was further reacted with 4-aminobenzaldehyde followed by treatment with 2-(2-pyridyl)-ethylamine resulting in functionalized 2D-hexagonal mesoporous sensor probe SBA-ABZ-PEA. Small angle PXRD, N2 adsorption/desorption, HRTEM, TGA, and FT-IR studies have been carried out to characterize these materials. Our experimental results suggested successful grafting of the organic moiety on the SBA-15 surface along with preservation of mesoporosity throughout the grafting process. Photoluminescence measurements were carried out in the aqueous suspension of SBA-ABZ-PEA in the presence of different metal cations, like NaI, MgII, AlIII, KI, CaII, MnII, CoII, CuII, ZnII, CdII, PbII, and HgII. This result revealed that, among the various metal-ions, the emission intensity of the mesoporous sensing probe material SBA-ABZ-PEA has been dramatically quenched in the presence of the HgII ion. To check the sensitivity of the sensor probe, the fluorescence emission was also studied in the presence of different concentrations of HgII ions. A perfect linear plot between the concentrations of HgII ions in the aqueous medium with their corresponding fluorescence intensities with a detection limit of 1.2 × 10-6 M has been observed.
Collapse
Affiliation(s)
- Luna Paul
- Department
of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Somali Mukherjee
- Department
of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Sauvik Chatterjee
- School
of Materials Sciences, Indian Association
for the Cultivation of Science, 2A & B Raja S. C. Mullick Road, Jadavpur 700 032, India
| | - Asim Bhaumik
- School
of Materials Sciences, Indian Association
for the Cultivation of Science, 2A & B Raja S. C. Mullick Road, Jadavpur 700 032, India
| | - Debasis Das
- Department
of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| |
Collapse
|
9
|
Chatterjee S, Li XS, Liang F, Yang YW. Design of Multifunctional Fluorescent Hybrid Materials Based on SiO 2 Materials and Core-Shell Fe 3 O 4 @SiO 2 Nanoparticles for Metal Ion Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1904569. [PMID: 31573771 DOI: 10.1002/smll.201904569] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/17/2019] [Indexed: 05/12/2023]
Abstract
Hybrid fluorescent materials constructed from organic chelating fluorescent probes and inorganic solid supports by covalent interactions are a special type of hybrid sensing platform that has gained much interest in the context of metal ion sensing applications owing to their excellent advantages, recyclability, and solubility/dispersibility in particular, as compared with single organic fluorescent molecules. In recent decades, SiO2 materials and core-shell Fe3 O4 @SiO2 nanoparticles have become important inorganic solid materials and have been used as inorganic solid supports to hybridize with organic fluorescent receptors, resulting in multifunctional fluorescent hybrid systems for potential applications in sensing and related research fields. Therefore, recent progress in various fluorescent-group-functionalized SiO2 materials is reviewed, with a focus on mesoporous silica nanoparticles and core-shell Fe3 O4 @SiO2 nanoparticles, as interesting fluorescent organic-inorganic hybrid materials for sensing applications toward essential and toxic metal ions. Selective examples of other types of silica/silicon materials, such as periodic mesoporous organosilicas, solid SiO2 nanoparticles, fibrous silica spheres, silica nanowires, silica nanotubes, and silica hollow microspheres, are also mentioned. Finally, relevant perspectives of metal-ion-sensing-oriented silica-fluorescent probe hybrid materials are provided.
Collapse
Affiliation(s)
- Sobhan Chatterjee
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Xiang-Shuai Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Feng Liang
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China
| | - Ying-Wei Yang
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
10
|
Ahmadi T, Bahar S, Mohammadi Ziarani G, Badiei A. Formation of functionalized silica-based nanoparticles and their application for extraction and determination of Hg (II) ion in fish samples. Food Chem 2019; 300:125180. [PMID: 31325753 DOI: 10.1016/j.foodchem.2019.125180] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/30/2019] [Accepted: 07/12/2019] [Indexed: 12/14/2022]
Abstract
An isonicotinic acid hydrazide (INAH) chemically modified fumed silica, as a novel adsorbent, was designed for the preconcentration and determination of Hg (II) ions in fish samples via the solid phase extraction followed by the hydride generation atomic absorption spectrometry (HG-AAS). In this work, the efficiency of the synthesized adsorbent was investigated to determine its ability for the extraction of the Hg (II) ions from the aqueous solutions. The extraction efficiency was investigated by optimizing of different experimental conditions, such as pH, sample volume, flow rate, adsorbent dosage, and eluent type. Under the optimal conditions, a linear calibration curve for the solid phase extraction method was obtained in the range of between 0.12 and 16.5 μg L-1. The obtained detection limit and preconcentration factor were 0.018 μg L-1 and 25, respectively (RSD > 3%). The proposed optimized method was successfully applied to fish samples.
Collapse
Affiliation(s)
- Tahereh Ahmadi
- Department of Chemistry, Alzahra University, P.O. Box 1993893973, Tehran, Iran
| | - Shahriyar Bahar
- Department of Chemistry, Alzahra University, P.O. Box 1993893973, Tehran, Iran.
| | | | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| |
Collapse
|