1
|
Khadanga L, Roopan SM. Synthesis of propargylamine: pioneering a green path with non-conventional KA 2 coupling approach. Mol Divers 2024:10.1007/s11030-024-10826-8. [PMID: 38687398 DOI: 10.1007/s11030-024-10826-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/20/2024] [Indexed: 05/02/2024]
Abstract
The KA2 coupling reaction is a well-explored and versatile method for forming C-C bonds in synthetic chemistry. It is composed of ketone, amine, and alkyne, which play a major role in the synthesis of propargylamines, known for their diverse biological activities and are used in treating neurogenetical disorders. The KA2 coupling is highly challenging due to the low reactivity of ketimines toward nucleophilic attacks with metal acetylide intermediates formed by activating the C-H bond of the alkyne. Despite predominant studies conducted on thermal conditions for KA2 coupling reactions, green and sustainable approaches like non-conventional methods still have a lot to achieve. This review article provides a comprehensive introduction to the non-conventional approach in the KA2 coupling reaction, outlining its mechanisms and exploring future aspects.
Collapse
Affiliation(s)
- Lambodar Khadanga
- Chemistry of Heterocycles and Natural Product Research Laboratory, Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
| | - Selvaraj Mohana Roopan
- Chemistry of Heterocycles and Natural Product Research Laboratory, Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India.
| |
Collapse
|
2
|
Sarkar FK, Kyndiah L, Gajurel S, Sarkar R, Jana S, Pal AK. A sustainable avenue for the synthesis of propargylamines and benzofurans using a Cu-functionalized MIL-101(Cr) as a reusable heterogeneous catalyst. Sci Rep 2023; 13:12908. [PMID: 37558730 PMCID: PMC10412598 DOI: 10.1038/s41598-023-40154-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023] Open
Abstract
A heterogeneous copper-catalyzed A3 coupling reaction of aldehydes, amines, and alkynes for the synthesis of propargylamines and benzofurans has been developed. Here, the modified metal-organic framework MIL-101(Cr)-SB-Cu complex was chosen as the heterogeneous copper catalyst and prepared via post-synthetic modification of amino-functionalized MIL-101(Cr). The structure, morphology, thermal stability, and copper content of the catalyst were determined by FT-IR, PXRD, SEM, TEM, EDX, TGA, XPS, and ICP-OES. The catalyst shows high catalytic activity for the aforementioned reactions under solvent-free reaction conditions. High yields, low catalyst loading, easy catalyst recovery and reusability with not much shrink in catalytic activity, and a good yield of 82% in gram-scale synthesis are some of the benefits of this protocol that drove it towards sustainability.
Collapse
Affiliation(s)
- Fillip Kumar Sarkar
- Department of Chemistry, Centre for Advanced Studies, North-Eastern Hill University, Shillong, Meghalaya, 793022, India
| | - Lenida Kyndiah
- Department of Chemistry, Centre for Advanced Studies, North-Eastern Hill University, Shillong, Meghalaya, 793022, India
| | - Sushmita Gajurel
- Department of Chemistry, Centre for Advanced Studies, North-Eastern Hill University, Shillong, Meghalaya, 793022, India
| | - Rajib Sarkar
- Department of Chemistry, Centre for Advanced Studies, North-Eastern Hill University, Shillong, Meghalaya, 793022, India
| | - Samaresh Jana
- Department of Chemistry, School of Applied Sciences, KIIT- Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Amarta Kumar Pal
- Department of Chemistry, Centre for Advanced Studies, North-Eastern Hill University, Shillong, Meghalaya, 793022, India.
| |
Collapse
|
3
|
Kafshdarzadeh K, Malmir M, Amiri Z, Heravi MM. Ionic liquid-loaded triazine-based magnetic nanoparticles for promoting multicomponent reaction. Sci Rep 2022; 12:22261. [PMID: 36564418 PMCID: PMC9789048 DOI: 10.1038/s41598-022-26235-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
A novel hybrid magnetic ionic-liquid as a heterogeneous catalyst was synthesized by hybridization of imidazolium based-ionic liquid onto the nitrogen rich magnetic nanocomposite. The resulting catalyst (n-Fe3O4@SiO2-TA-SO3H IL) has two advantages besides recyclability: (i) high capacity of functional-SO3H group with imidazolium-IL cation for promoting symmetric and asymmetric Hantzsch reaction and (ii) easy recovery. Caused by the polymeric and magnetic nature of the n-Fe3O4@SiO2-TA-SO3H IL, large quantities of acidic groups were bound to the n-Fe3O4@SiO2-TA surface, which reduced the catalyst mass applied to the catalytic reaction. Moreover, superior catalytic performance and outstanding recyclability of n-Fe3O4@SiO2-TA-SO3H IL in mild condition make this method a green pathway for manufacture of satisfactory chemicals.
Collapse
Affiliation(s)
- Kosar Kafshdarzadeh
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran, Iran
| | - Masoume Malmir
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran, Iran
| | - Zahra Amiri
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran, Iran
| | - Majid M Heravi
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran, Iran.
| |
Collapse
|
4
|
Tajbakhsh M, Mazhari F, Mavvaji M. Copper (II)-immobilized on Starch-coated Nanomagnetite as an Efficient and Magnetically Recoverable Catalyst for the Synthesis of Propargylamines through One-pot A 3 Coupling Reaction. ORG PREP PROCED INT 2022. [DOI: 10.1080/00304948.2022.2134697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Mahmood Tajbakhsh
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Fatemeh Mazhari
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Mohammad Mavvaji
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
5
|
Datta K, Mitra B, Sharma BS, Ghosh P. One‐pot Three‐component Solvent‐free Tandem Annulations for Synthesis of Tetrazolo[1,2‐
a
]pyrimidine and [1,2,4]triazolo[1,5‐
a
]pyrimidine. ChemistrySelect 2022. [DOI: 10.1002/slct.202103602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Kumaresh Datta
- Department of Chemistry University of North Bengal Dist. Darjeeling West Bengal India
| | - Bijeta Mitra
- Department of Chemistry University of North Bengal Dist. Darjeeling West Bengal India
| | - Biswajit Shil Sharma
- Department of Chemistry University of North Bengal Dist. Darjeeling West Bengal India
| | - Pranab Ghosh
- Department of Chemistry University of North Bengal Dist. Darjeeling West Bengal India
| |
Collapse
|
6
|
Kumar P, Tomar V, Kumar D, Joshi RK, Nemiwal M. Magnetically active iron oxide nanoparticles for catalysis of organic transformations: A review. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132641] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
7
|
Investigation of halloysite nanotubes and Schiff base combination with deposited copper iodide nanoparticles as a novel heterogeneous catalytic system. Sci Rep 2021; 11:23658. [PMID: 34880320 PMCID: PMC8654983 DOI: 10.1038/s41598-021-02991-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/25/2021] [Indexed: 11/20/2022] Open
Abstract
The design, preparation and characterization of a novel composite based on functionalization of halloysite nanoclay with Schiff base followed by immobilization of copper iodide as nanoparticles is revealed. This novel nano composite was fully characterized by utilization of FTIR, SEM/EDX, TGA, XRD and BET techniques. This Cu(I) NPs immobilized onto halloysite was successfully examined as a heterogeneous, thus easily recoverable and reusable catalyst in one of classist organic name reaction so-called “Click Reaction”. That comprised a three component reaction of phenylacetylene, α-haloketone or alkyl halide and sodium azide in aqueous media to furnish 1,2,3‐triazoles in short reaction time and high yields. Remarkably, the examination of the reusability of the catalyst confirmed that the catalyst could be reused at least six reaction runs without appreciable loss of its catalytic activity.
Collapse
|
8
|
Machado IV, Dos Santos JRN, Januario MAP, Corrêa AG. Greener organic synthetic methods: Sonochemistry and heterogeneous catalysis promoted multicomponent reactions. ULTRASONICS SONOCHEMISTRY 2021; 78:105704. [PMID: 34454180 PMCID: PMC8406036 DOI: 10.1016/j.ultsonch.2021.105704] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/24/2021] [Accepted: 07/29/2021] [Indexed: 06/06/2023]
Abstract
Ultrasound is an essential technique to improve organic synthesis from the point of view of green chemistry, as it can promote better yields and selectivities, in addition to shorter reaction times when compared to the conventional methods. Heterogeneous catalysis is another pillar of sustainable chemistry being the recycling and reuse of the catalysts one of its great advantage. In the other hand, multicomponent reactions provide the synthesis of structurally diverse compounds, in a one-pot fashion, without isolation and purification of intermediates. Thus, the combination of these protocols has proved to be a powerful tool to obtain biologically active organic compounds with lower costs, time and energy consumption. Herein, we provide a comprehensive overview of advances on methods of organic synthesis that have been reported over the past ten years with focus on ultrasound-assisted multicomponent reactions under heterogeneous catalysis. In particular, we present pharmacologically important N- and O-heterocyclic compounds, considering their synthetic methods using green solvents, and catalyst recycling.
Collapse
Affiliation(s)
- Ingrid V Machado
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Jhonathan R N Dos Santos
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Marcelo A P Januario
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Arlene G Corrêa
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil.
| |
Collapse
|
9
|
Abtahi B, Tavakol H. CuI‐catalyzed, one‐pot synthesis of 3‐aminobenzofurans in deep eutectic solvents. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Bahareh Abtahi
- Department of Chemistry Isfahan University of Technology Isfahan Iran
| | - Hossein Tavakol
- Department of Chemistry Isfahan University of Technology Isfahan Iran
| |
Collapse
|
10
|
Hosseinzadeh‐Baghan S, Mirzaei M, Eshtiagh‐Hosseini H, Zadsirjan V, Heravi MM, Mague JT. An inorganic–organic hybrid material based on a Keggin‐type polyoxometalate@Dysprosium as an effective and green catalyst in the synthesis of 2‐amino‐4
H
‐chromenes via multicomponent reactions. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5793] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sara Hosseinzadeh‐Baghan
- Department of Chemistry, Faculty of ScienceFerdowsi University of Mashhad Mashhad 917751436 Iran
| | - Masoud Mirzaei
- Department of Chemistry, Faculty of ScienceFerdowsi University of Mashhad Mashhad 917751436 Iran
| | | | - Vahideh Zadsirjan
- Department of ChemistrySchool of Science, Alzahra University PO Box 1993891176 Tehran Vanak Iran
| | - Majid M. Heravi
- Department of ChemistrySchool of Science, Alzahra University PO Box 1993891176 Tehran Vanak Iran
| | - Joel T. Mague
- Department of ChemistryTulane University New Orleans LA 70118 USA
| |
Collapse
|
11
|
Zoghi R, Heravi MM, Montazeri N, Zeydi MM, Hosseinnejad T. Preparation of an efficient catalyst through injection of CuI on modified poly (styrene‐co‐maleic anhydride) and theoretical investigation of the structural and electronic properties of catalyst. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Rozita Zoghi
- Department of chemistry, Tonekabon BranchIslamic Azad University Tonekabon Iran
| | | | - Naser Montazeri
- Department of chemistry, Tonekabon BranchIslamic Azad University Tonekabon Iran
| | | | | |
Collapse
|
12
|
Heravi MM, Hosseinnejad T, Tamimi M, Zadsirjan V, Mirzaei M. 12-Tungstoboric acid (H5BW12O40) as an efficient Lewis acid catalyst for the synthesis of chromenopyrimidine-2,5-diones and thioxochromenopyrimidin-5-ones: Joint experimental and computational study. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127598] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Dou MY, Huang XQ, Yang GY. Two inorganic–organic hybrid silver-polyoxometalates as reusable catalysts for one-pot synthesis of propargylamines via a three-component coupling reaction at room temperature. CrystEngComm 2020. [DOI: 10.1039/d0ce00042f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two silver-polyoxometalates [Ag3L2(DMSO)2][PW12O40]·4DMSO (1) and [(Ag2L2)2][SiW12O40]·10DMSO·2H2O (2) are made and 1 shows good catalytic activities for three-component coupling reaction.
Collapse
Affiliation(s)
- Ming-Yu Dou
- MOE Key Laboratory of Cluster Science
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Xian-Qiang Huang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
- School of Chemistry & Chemical Engineering
- Liaocheng University
- Liaocheng
- P. R. China
| | - Guo-Yu Yang
- MOE Key Laboratory of Cluster Science
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
| |
Collapse
|
14
|
Kaur N, Ahlawat N, Verma Y, Grewal P, Bhardwaj P, Jangid NK. Metal and organo-complex promoted synthesis of fused five-memberedO-heterocycles. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1700522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Navjeet Kaur
- Department of Chemistry, Banasthali Vidyapith, Banasthali, India
| | - Neha Ahlawat
- Department of Chemistry, Banasthali Vidyapith, Banasthali, India
| | - Yamini Verma
- Department of Chemistry, Banasthali Vidyapith, Banasthali, India
| | - Pooja Grewal
- Department of Chemistry, Banasthali Vidyapith, Banasthali, India
| | - Pranshu Bhardwaj
- Department of Chemistry, Banasthali Vidyapith, Banasthali, India
| | | |
Collapse
|
15
|
Ghanbarian M, Beheshtiha SYS, Heravi MM, Mirzaei M, Zadsirjan V, Lotfian N. A Nano-sized Nd–Ag@polyoxometalate Catalyst for Catalyzing the Multicomponent Hantzsch and Biginelli Reactions. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01739-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
16
|
Daraie M, Heravi MM. A biocompatible chitosan-ionic liquid hybrid catalyst for regioselective synthesis of 1,2,3-triazols. Int J Biol Macromol 2019; 140:939-948. [DOI: 10.1016/j.ijbiomac.2019.08.162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/15/2019] [Accepted: 08/18/2019] [Indexed: 12/21/2022]
|
17
|
Rajendran A, Rajendiran M, Yang ZF, Fan HX, Cui TY, Zhang YG, Li WY. Functionalized Silicas for Metal-Free and Metal-Based Catalytic Applications: A Review in Perspective of Green Chemistry. CHEM REC 2019; 20:513-540. [PMID: 31631504 DOI: 10.1002/tcr.201900056] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/23/2019] [Indexed: 12/20/2022]
Abstract
Heterogeneous catalysis plays a key role in promoting green chemistry through many routes. The functionalizable reactive silanols highlight silica as a beguiling support for the preparation of heterogeneous catalysts. Metal active sites anchored on functionalized silica (FS) usually demonstrate the better dispersion and stability due to their firm chemical interaction with FSs. Having certain functional groups in structure, FSs can act as the useful catalysts for few organic reactions even without the need of metal active sites which are termed as the covetous reusable organocatalysts. Magnetic FSs have laid the platform where the effortless recovery of catalysts is realized just using an external magnet, resulting in the simplified reaction procedure. Using FSs of multiple functional groups, we can envisage the shortened reaction pathway and, reduced chemical uses and chemical wastes. Unstable bio-molecules like enzymes have been stabilized when they get chemically anchored on FSs. The resultant solid bio-catalysts exhibited very good reusability in many catalytic reactions. Getting provoked from the green chemistry aspects and benefits of FS-based catalysts, we confer the recent literature and progress focusing on the significance of FSs in heterogeneous catalysis. This review covers the preparative methods, types and catalytic applications of FSs. A special emphasis is given to the metal-free FS catalysts, multiple FS-based catalysts and magnetic FSs. Through this review, we presume that the contribution of FSs to green chemistry can be well understood. The future perspective of FSs and the improvements still required for implementing FS-based catalysts in practical applications have been narrated at the end of this review.
Collapse
Affiliation(s)
- Antony Rajendran
- Training Base of State Key Laboratory of Coal Science and Technology Jointly Constructed by Shanxi Province and Ministry of Science and Technology, Taiyuan University of Technology, Taiyuan, 030024, P.R. China
| | - Marimuthu Rajendiran
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, Maharashtra, India
| | - Zhi-Fen Yang
- Training Base of State Key Laboratory of Coal Science and Technology Jointly Constructed by Shanxi Province and Ministry of Science and Technology, Taiyuan University of Technology, Taiyuan, 030024, P.R. China
| | - Hong-Xia Fan
- Training Base of State Key Laboratory of Coal Science and Technology Jointly Constructed by Shanxi Province and Ministry of Science and Technology, Taiyuan University of Technology, Taiyuan, 030024, P.R. China
| | - Tian-You Cui
- Training Base of State Key Laboratory of Coal Science and Technology Jointly Constructed by Shanxi Province and Ministry of Science and Technology, Taiyuan University of Technology, Taiyuan, 030024, P.R. China
| | - Ya-Gang Zhang
- Department of Chemistry and Chemical Engineering, Xi'an University of Technology, Xi'an, 710054, PR China
| | - Wen-Ying Li
- Training Base of State Key Laboratory of Coal Science and Technology Jointly Constructed by Shanxi Province and Ministry of Science and Technology, Taiyuan University of Technology, Taiyuan, 030024, P.R. China.,Department of Chemistry and Chemical Engineering, Xi'an University of Technology, Xi'an, 710054, PR China
| |
Collapse
|
18
|
Sadjadi S, Heravi MM. Pd@tetrahedral hollow magnetic nanoparticles coated with N‐doped porous carbon as an efficient catalyst for hydrogenation of nitroarenes. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Samahe Sadjadi
- Gas Conversion Department, Faculty of PetrochemicalsIran Polymer and Petrochemicals Institute 15km Tehran‐Karaj Highway, Pajuhesh Science and Technology Park,Pajuhesh Boulevard PO Box 14975‐112 Tehran Iran
| | - Majid M. Heravi
- Department of Chemistry, School of ScienceAlzahra University PO Box 1993891176, Vanak Tehran Iran
| |
Collapse
|
19
|
Shahamat Z, Nemati F, Elhampour A. One-pot synthesis of propargylamines using magnetic mesoporous polymelamine formaldehyde/zinc oxide nanocomposite as highly efficient, eco-friendly and durable nanocatalyst: optimization by DOE approach. Mol Divers 2019; 24:691-706. [PMID: 31359369 DOI: 10.1007/s11030-019-09977-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 07/12/2019] [Indexed: 12/19/2022]
Abstract
Magnetic mesoporous polymelamine formaldehyde nanocomposite-incorporating ZnO nanoparticles were successfully synthesized using solvothermal and sol-gel methods. Fourier-transform infrared spectrometry (FT-IR), X-ray diffraction, Brunauer-Emmett-Teller, vibrating sample magnetometer, thermogravimetric analysis, elemental analysis, transmission electron microscopy and field emission scanning electron microscopy techniques were then utilized for evaluation of nanocomposites. The as-prepared nanocomposite can be used as heterogeneous nanocatalyst with remarkable performance for A3 coupling reaction toward one-pot synthesis of propargylamine and its derivatives under solvent-less condition. In order to maximize the product yield, the variables, i.e., reaction time, temperature and catalyst amount, were optimized by using a statistical approach. The synthesized nanocomposite can be easily separated from the reaction medium and reused over and over, without significant changes in its catalytic activity.
Collapse
Affiliation(s)
- Zahra Shahamat
- Department of Chemistry, Semnan University, Semnan, Iran
| | | | - Ali Elhampour
- Department of Chemistry, Semnan University, Semnan, Iran
| |
Collapse
|
20
|
Tzouras N, Neofotistos SP, Vougioukalakis GC. Zn-Catalyzed Multicomponent KA 2 Coupling: One-Pot Assembly of Propargylamines Bearing Tetrasubstituted Carbon Centers. ACS OMEGA 2019; 4:10279-10292. [PMID: 31460120 PMCID: PMC6648923 DOI: 10.1021/acsomega.9b01387] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 05/23/2019] [Indexed: 05/20/2023]
Abstract
Tetrasubstituted propargylamines comprise a unique class of highly useful compounds, which can be accessed through the multicomponent coupling between ketones, amines, and alkynes (KA2 coupling), an underexplored transformation. Herein, the development of a novel, highly efficient, and user-friendly catalytic system for the KA2 coupling, based on the environmentally benign, inexpensive, and readily available zinc acetate, is described. This system is employed in the multicomponent assembly of unprecedented, tetrasubstituted propargylamines derived from structurally diverse, challenging, and even biorelevant substrates. Notable features of this protocol include the demonstration of the enhancing effect that neat conditions can have on catalytic activity, as well as the expedient functionalization of hindered, prochiral cyclohexanones, linear ketones, and interesting molecular scaffolds such as norcamphor and nornicotine.
Collapse
|
21
|
Tamimi M, Heravi MM, Mirzaei M, Zadsirjan V, Lotfian N, Eshtiagh-Hosseini H. Ag3[PMo12O40]: An efficient and green catalyst for the synthesis of highly functionalized pyran-annulated heterocycles via multicomponent reaction. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5043] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Mehrnoush Tamimi
- Department of Chemistry, School of Science; Alzahra University; PO Box 1993891176 Vanak Tehran Iran
| | - Majid M. Heravi
- Department of Chemistry, School of Science; Alzahra University; PO Box 1993891176 Vanak Tehran Iran
| | - Masoud Mirzaei
- Department of Chemistry, Faculty of Science; Ferdowsi University of Mashhad; 917751436 Mashhad Iran
| | - Vahideh Zadsirjan
- Department of Chemistry, School of Science; Alzahra University; PO Box 1993891176 Vanak Tehran Iran
| | - Nahid Lotfian
- Department of Chemistry, School of Science; Alzahra University; PO Box 1993891176 Vanak Tehran Iran
| | | |
Collapse
|
22
|
Sadjadi S, Malmir M, Heravi MM, Raja M. Magnetic hybrid of cyclodextrin nanosponge and polyhedral oligomeric silsesquioxane: Efficient catalytic support for immobilization of Pd nanoparticles. Int J Biol Macromol 2019; 128:638-647. [DOI: 10.1016/j.ijbiomac.2019.01.181] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 12/31/2018] [Accepted: 01/28/2019] [Indexed: 01/09/2023]
|
23
|
Heravi MM, Mirzaei M, Beheshtiha SYS, Zadsirjan V, Mashayekh Ameli F, Bazargan M. H5
BW12
O40
as a green and efficient homogeneous but recyclable catalyst in the synthesis of 4H
-Pyrans via
multicomponent reaction. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4479] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Majid M. Heravi
- Department of Chemistry, School of Science; Alzahra University; PO Box 1993891176, Vanak Tehran Iran
| | - Masoud Mirzaei
- Department of Chemistry, Faculty of Science; Ferdowsi University of Mashhad; 917751436 Mashhad Iran
| | | | - Vahideh Zadsirjan
- Department of Chemistry, School of Science; Alzahra University; PO Box 1993891176, Vanak Tehran Iran
| | - Fatemeh Mashayekh Ameli
- Department of Chemistry, School of Science; Alzahra University; PO Box 1993891176, Vanak Tehran Iran
| | - Maryam Bazargan
- Department of Chemistry, Faculty of Science; Ferdowsi University of Mashhad; 917751436 Mashhad Iran
| |
Collapse
|
24
|
Sadjadi S, Heravi MM, Malmir M. Pd(0) nanoparticle immobilized on cyclodextrin-nanosponge-decorated Fe 2 O 3 @SiO 2 core-shell hollow sphere: An efficient catalyst for C C coupling reactions. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.02.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|