1
|
Aghajani M, Dabiri M. Ultrasound-assisted Cu(II) Strecker-functionalized organocatalyst for green azide-alkyne cycloaddition and Ullmann reactions. Sci Rep 2024; 14:12141. [PMID: 38802456 PMCID: PMC11130308 DOI: 10.1038/s41598-024-62826-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024] Open
Abstract
A new aminonitrile-functionalized Fe3O4 has been synthesized via the Strecker reaction, the designed aminonitrile ligand on the surface of the magnetic core coordinated to copper(II) to obtain the final new catalyst. The fabricated nanocatalyst was characterized by Fourier transform Infrared (FT-IR), Field Emission Scanning Electron Microscopy (FESEM), Energy-Dispersive X-ray spectroscopy (EDX), Transmission Electron Microscopy (TEM), Vibrating-Sample Magnetometer (VSM), Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES), and Thermogravimetric Analysis (TGA). The high tendency of nitrogens in the aminonitrile functional group to make a complex with Cu(II) has caused the practical activity of this nucleus in this catalyst. This nanocatalyst performance was investigated in azide-alkyne Huisgen cycloaddition (3 + 2) reaction for achieving to 1,4-disubstituted 1,2,3-triazoles in water as a green media at room temperature. In another try, Classic Ullmann Reaction was investigated for the synthesis of biaryls at 85 °C promoted by ultrasonic condition (37 kHz). The reaction scope was explored using different reactants and the results of using this developed catalytic system demonstrated its capacity to reduce the reaction time and enhance the reaction efficiency to provide good to excellent product yield. Conversely, the simple recycling and reusability of this catalyst for at least six times without any noticeable leaching of copper makes it a potential future catalyst for synthesizing such compounds.
Collapse
Affiliation(s)
- Mahyar Aghajani
- Department of Organic Chemistry and Oil, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, 1983969411, Islamic Republic of Iran.
| | - Minoo Dabiri
- Department of Organic Chemistry and Oil, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, 1983969411, Islamic Republic of Iran.
| |
Collapse
|
2
|
Di Terlizzi L, Scaringi S, Raviola C, Pedrazzani R, Bandini M, Fagnoni M, Protti S. Visible Light-Driven, Gold(I)-Catalyzed Preparation of Symmetrical (Hetero)biaryls by Homocoupling of Arylazo Sulfones. J Org Chem 2022; 87:4863-4872. [PMID: 35316603 PMCID: PMC8981317 DOI: 10.1021/acs.joc.2c00225] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Indexed: 01/02/2023]
Abstract
The preparation of symmetrical (hetero)biaryls via arylazo sulfones has been successfully carried out upon visible light irradiation in the presence of PPh3AuCl as the catalyst. The present protocol led to the efficient synthesis of a wide range of target compounds in an organic-aqueous solvent under photocatalyst-free conditions.
Collapse
Affiliation(s)
- Lorenzo Di Terlizzi
- PhotoGreen
Lab, Department of Chemistry, University
of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Simone Scaringi
- PhotoGreen
Lab, Department of Chemistry, University
of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
- Department
of Organic Chemistry, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Carlotta Raviola
- PhotoGreen
Lab, Department of Chemistry, University
of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Riccardo Pedrazzani
- Dipartimento
di Chimica ″Giacomo Ciamician″, Alma Mater Studiorum-University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Marco Bandini
- Dipartimento
di Chimica ″Giacomo Ciamician″, Alma Mater Studiorum-University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Maurizio Fagnoni
- PhotoGreen
Lab, Department of Chemistry, University
of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Stefano Protti
- PhotoGreen
Lab, Department of Chemistry, University
of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
3
|
Astruc D. On the Roles of Electron Transfer in Catalysis by Nanoclusters and Nanoparticles. Chemistry 2021; 27:16291-16308. [PMID: 34427365 DOI: 10.1002/chem.202102477] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Indexed: 01/09/2023]
Abstract
Electron transfer plays a major role in chemical reactions and processes, and this is particularly true of catalysis by nanomaterials. The advent of metal nanoparticle (NP) catalysts, recently including atomically precise nanoclusters (NCs) as parts of nanocatalyst devices has brought increased control of the relationship between NP and NC structures and their catalytic functions. Consequently, the molecular definition of these new nanocatalysts has allowed a better understanding and management of various kinds of electron transfer involved in the catalytic processes. This Minireview brings a chemist's view of several major aspects of electron-transfer functions concerning NPs and NCs in catalytic processes. Particular focus concerns the role of NPs and NCs as electron reservoirs and light-induced antenna in catalytic processes from H2 generation to more complex reactions and sustainable energy production.
Collapse
Affiliation(s)
- Didier Astruc
- Univ. Bordeaux, ISM UMR N°5801, 351 Cours de la Libération, 33405, Talence Cedex, France
| |
Collapse
|
4
|
Abstract
Over the past few decades, the use of transition metal nanoparticles (NPs) in catalysis has attracted much attention and their use in C–C bond forming reactions constitutes one of their most important applications. A huge variety of metal NPs, which have showed high catalytic activity for C–C bond forming reactions, have been developed up to now. Many kinds of stabilizers, such as inorganic materials, magnetically recoverable materials, porous materials, organic–inorganic composites, carbon materials, polymers, and surfactants have been utilized to develop metal NPs catalysts. This review classified and outlined the categories of metal NPs by the type of support.
Collapse
|
5
|
A One-Step Method for Preparation of Ru Nanoparticle Decorated on Three-Dimensional Graphene with High Catalytic Activity for Reduction of Nitroarenes. J CLUST SCI 2020. [DOI: 10.1007/s10876-020-01860-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Shiri P, Aboonajmi J. A systematic review on silica-, carbon-, and magnetic materials-supported copper species as efficient heterogeneous nanocatalysts in "click" reactions. Beilstein J Org Chem 2020; 16:551-586. [PMID: 32280385 PMCID: PMC7136568 DOI: 10.3762/bjoc.16.52] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 03/11/2020] [Indexed: 01/07/2023] Open
Abstract
In recent years, many inorganic silica/carbon-based and magnetic materials have been selected to arrest copper ions through a widespread range of anchoring and embedding methodologies. These inorganic supported nanocatalysts have been found to be efficient, environmentally friendly, recyclable, and durable. In addition, one of the vital issues for expanding new, stable, and reusable catalysts is the discovery of unique catalysts. The basis and foundation of this review article is to consider the recently published developments (2014-2019) in the synthesis and catalytic applications of copper supported by silica nanocomposites, carbon nanocomposites, and magnetic nanocomposites for expanding the "click" chemistry.
Collapse
Affiliation(s)
- Pezhman Shiri
- Department of Chemistry, Shiraz University, Shiraz, Iran
| | | |
Collapse
|
7
|
Jiang J, Du L, Ding Y. Aryl-Aryl Bond Formation by Ullmann Reaction: From Mechanistic Aspects to Catalyst. MINI-REV ORG CHEM 2020. [DOI: 10.2174/1570193x15666181031111117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Aryl-aryl bond formation is one of the most important tools in modern organic synthesis.
Therefore, there is a high level of interest to develop green, effective reaction system to obtain biaryls.
This review summarized the recent advances in the metal-catalyzed Ullmann reaction in which
the aryl-aryl bond was formed directly. Furthermore, different types of catalytic mechanisms, especially
the surface reaction, have been summarized to help the design of the catalyst.
Collapse
Affiliation(s)
- Jie Jiang
- International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Liyong Du
- International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Yuqiang Ding
- International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| |
Collapse
|
8
|
Wang W, Chen S, Guisasola Cal E, Martínez Moro M, Moya S, Coy E, Wang C, Hamon JR, Astruc D. ZIF-8-based vs. ZIF-8-derived Au and Pd nanoparticles as efficient catalysts for the Ullmann homocoupling reaction. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00831a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
On comparing ZIF-8-based and ZIF-8-derived gold and palladium nanocatalysts, they were found to be very efficient for the optimized Ullmann coupling of iodoarenes in DMF.
Collapse
Affiliation(s)
- Wenjuan Wang
- ISM
- UMR CNRS 5255
- Université de Bordeaux
- Talence 33405 Cedex
- France
| | - Shuang Chen
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials
- Anhui University
- Hefei
- China
| | | | - Marta Martínez Moro
- Soft Matter Nanotechnology Lab
- CIC biomaGUNE
- 20014 Donostia-San Sebastián
- Spain
| | - Sergio Moya
- Soft Matter Nanotechnology Lab
- CIC biomaGUNE
- 20014 Donostia-San Sebastián
- Spain
| | - Emerson Coy
- NanoBioMedical Centre
- Adam Mickiewicz University in Poznań
- 61-614 Poznań
- Poland
| | - Changlong Wang
- ISM
- UMR CNRS 5255
- Université de Bordeaux
- Talence 33405 Cedex
- France
| | - Jean-René Hamon
- Institut des Sciences Chimiques
- UMR CNRS 6226
- Université de Rennes 1
- 35042 Rennes Cedex
- France
| | - Didier Astruc
- ISM
- UMR CNRS 5255
- Université de Bordeaux
- Talence 33405 Cedex
- France
| |
Collapse
|
9
|
Vallejo JP, Sani E, Żyła G, Lugo L. Tailored silver/graphene nanoplatelet hybrid nanofluids for solar applications. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.112007] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|