1
|
Chang CW, Lee CR, Lee GH, Lu KL. The straightforward synthesis of N-coordinated ruthenium 4-aryl-1,2,3-triazolato complexes by [3 + 2] cycloaddition reactions of a ruthenium azido complex with terminal phenylacetylenes and non-covalent aromatic interactions in structures. RSC Adv 2022; 12:24830-24838. [PMID: 36128372 PMCID: PMC9430631 DOI: 10.1039/d2ra04835c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/22/2022] [Indexed: 11/21/2022] Open
Abstract
The straightforward preparation of N-coordinated ruthenium triazolato complexes by [3 + 2] cycloaddition reactions of a ruthenium azido complex [Ru]-N3 (1, [Ru] = (η5-C5H5)(dppe)Ru, dppe = Ph2PCH2CH2PPh2) with a series of terminal phenylacetylenes is reported. The reaction products, N(2)-bound ruthenium 4-aryl-1,2,3-triazolato complexes such as [Ru]N3C2H(4-C6H4CN) (2), [Ru]N3C2H(4-C6H4CHO) (3), [Ru]N3C2H(4-C6H4F) (4), [Ru]N3C2H(Ph) (5) and [Ru]N3C2H(4-C6H4CH3) (6) were produced from 4-ethynylbenzonitrile, 4-ethynylbenzaldehyde, 1-ethynyl-4-fluorobenzene, phenylacetylene and 4-ethynyltoluene, respectively, at 80 °C or above under an atmosphere of air. To the best of our knowledge, this is the first example of the preparation of N-coordinated ruthenium aryl-substituted 1,2,3-triazolato complexes by the [3 + 2] cycloaddition of a metal-coordinated azido ligand and a terminal aryl acetylene, less electron-deficient terminal aryl alkynes. All of the compounds have been fully characterized and the structures of complexes 2, 3, 5 and 6 were confirmed by single-crystal X-ray diffraction analysis. Each compound participates in non-covalent aromatic interactions in the solid-state structure which can be favorable in the binding of DNA/biomolecular targets and has shown great potential in the development of biologically active anticancer drugs.
Collapse
Affiliation(s)
- Chao-Wan Chang
- Division of Preparatory Programs for Overseas Chinese Students, National Taiwan Normal University Linkou New Taipei City 24449 Taiwan
| | - Chi-Rung Lee
- Department of Applied Materials Science and Technology, Minghsin University of Science and Technology Hsinchu 30401 Taiwan
| | - Gene-Hsiang Lee
- Instrumentation Center, National Taiwan University Taipei 10617 Taiwan
| | - Kuang-Lieh Lu
- Department of Chemistry, Fu Jen Catholic University New Taipei City 242 Taiwan
| |
Collapse
|
2
|
Choroba K, Machura B, Raposo LR, Małecki JG, Kula S, Pająk M, Erfurt K, Maroń AM, Fernandes AR. Platinum(ii) complexes showing high cytotoxicity toward A2780 ovarian carcinoma cells. Dalton Trans 2019; 48:13081-13093. [PMID: 31411239 DOI: 10.1039/c9dt02894c] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
2,6-Bis(thiazol-2-yl)pyridines functionalized with 9-anthryl (L1), 9-phenanthryl (L2), and 1-pyrenyl (L3) groups were used for the preparation of [Pt(Ln)Cl]CF3SO3 (1-3). The constitution of the Pt(ii) complexes was determined by 1H and 13C NMR spectroscopy, HR-MS spectrometry, elemental analysis and X-ray analysis (for (1)). The electrochemical and photophysical properties of [Pt(Ln)Cl]CF3SO3 were compared with the behaviour of the Pt(ii) complexes with aryl-substituted 2,2':6',2''-terpyridine ligands. What is noteworthy is that the coordination ability of dtpy toward the Pt(ii) centre was investigated for the first time. All complexes were tested in vitro by MTS assay on four tumor cell lines, A2780 (ovarian carcinoma), HTC116 (colon rectal carcinoma), MCF7 (breast adenocarcinoma), and PC3 (prostate carcinoma) and on normal primary fibroblasts. Compounds (1-3) showed a dose dependent antiproliferative effect in the A2780 cell line with (3) > (2) > (1) and this loss of A2780 cell viability was due to a combination of an apoptotic cell death mechanism via mitochondria and autophagic cell death. Exposure to IC50 concentration of (2) induced an increase in the number of apoptotic nuclei and a depolarization of the mitochondrial membrane which is consistent with the induction of apoptosis while exposure to IC50 concentration of (3) showed an increase in the apoptotic nuclei with a slight hyperpolarization of the mitochondrial membrane that might indicate an initial step of apoptosis induction. The complexes (2) and (3) induce an increase in the production of intracellular ROS which is associated with the trigger of the apoptotic pathways. The ROS production was augmented by the presence of oxidants and correlated with an increase of oxygen radicals. The IC50 of (2) and (3) (4.4 μM and 2.9 μM, respectively) was similar to the IC50 of cisplatin (3.4 μM) in the A2780 cell line, which together with their low cytotoxicity in normal fibroblasts, demonstrates their potential for further studies.
Collapse
Affiliation(s)
- Katarzyna Choroba
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland.
| | - Barbara Machura
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland.
| | - Luis R Raposo
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal.
| | - Jan G Małecki
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland.
| | - Slawomir Kula
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland.
| | - Michał Pająk
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland.
| | - Karol Erfurt
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
| | - Anna M Maroń
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland.
| | - Alexandra R Fernandes
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal.
| |
Collapse
|
3
|
Abstract
Thiazoles have attracted much synthetic interest due to their wide variety of biological properties and are important members of heterocyclic compounds. In recent years, studies on the synthesis of thiazole compounds have been increasing because of the properties of this core. In particular, the hybrid structures in which the thiazole ring and the other nuclei are linked have gained popularity. Hybrid structures are formed by the combination of different groups of chemical reactivity and biological activity characteristics. In this review, we highlight recent developments related to hybrid structures containing a thiazole core, recently developed as anticancer, antibacterial, anti-inflammatory, analgesic, anti-tubercular, antialzheimer and antidiabetic compounds.
Collapse
|
4
|
Wang XN, Su XX, Cheng SQ, Sun ZY, Huang ZS, Ou TM. MYC modulators in cancer: a patent review. Expert Opin Ther Pat 2019; 29:353-367. [PMID: 31068032 DOI: 10.1080/13543776.2019.1612878] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
INTRODUCTION The important role of MYC in tumorigenesis makes it particularly important to design MYC modulators. Over the past decade, researchers have raised a number of strategies for designing MYC modulators, some of which are already in clinical trials. This paper aims to review the patents of MYC modulators. AREAS COVERED The important biological relevance of c-MYC and the regulation pathways related to c-MYC are briefly introduced. Base on that, the MYC modulators reported in published patents and references primarily for cancer treatment are outlined, highlighting the structures and biological activities. EXPERT OPINION There has been a growing awareness of finding and designing MYC modulators as novel anticancer drugs over recent years. Patents involving the discovery, synthesis, and application of MYC modulators are particularly important for further development in this field. Although finding direct MYC inhibitors or binders is challenging, MYC cannot be simply defined as an undruggable target. There is still substantial evidence proving the concept that MYC modulators can benefit to the treatment of both human hematological malignancies and solid tumors. More efforts should be taken to improve the activity and specificity of MYC modulators.
Collapse
Affiliation(s)
- Xiao-Na Wang
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , Guangdong , China
| | - Xiao-Xuan Su
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , Guangdong , China
| | - Sui-Qi Cheng
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , Guangdong , China
| | - Zhi-Yin Sun
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , Guangdong , China
| | - Zhi-Shu Huang
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , Guangdong , China
| | - Tian-Miao Ou
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , Guangdong , China
| |
Collapse
|
5
|
Arunadevi A, Porkodi J, Ramgeetha L, Raman N. Biological evaluation, molecular docking and DNA interaction studies of coordination compounds gleaned from a pyrazolone incorporated ligand. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2019; 38:656-679. [PMID: 30990358 DOI: 10.1080/15257770.2019.1597975] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this work, we have synthesized a few novel mononuclear complexes of Cu(II), Co(II), Ni(II) and Zn(II) using a pyrazolone-derived Schiff base ligand. They were characterized by spectroscopic and analytical methods. The elemental analyses, UV-Vis, magnetic moment values and molar conductance of the complexes reveal that the complexes adopt an octahedral arrangement around the central metal ions. The interaction of complexes with CT-DNA was studied by absorption spectral titration and viscosity measurements. The observed data show that the complexes bind with CT-DNA via an intercalation mode. Efficient pUC18 DNA cleavage ability of the synthesized compounds was explored by gel electrophoresis. The antimicrobial activity of these compounds against a set of bacterial and fungal strains reveals that the complexes exhibit better activity than the free ligand. Moreover, all the complexes were evaluated against two cancer (HeLa and HepG2) and one normal (NHDF) cell lines. The data were compared with cisplatin. Anti-inflammatory activity has been experimentally validated which proves that theoretical predictions concur with the experimental results. In addition, molecular docking studies have been performed to consider the nature of binding mode and binding affinity of these compounds with DNA (1BNA) and protein (3hb5). These studies reveal that the mode of binding is intercalation and the complexes have higher binding energy scores than the free ligand.
Collapse
Affiliation(s)
| | - Jeyaraman Porkodi
- b Department of Chemistry , The SFR College for Women , Sivakasi , India
| | | | - Natarajan Raman
- a Research Department of Chemistry , VHNSN College , Virudhunagar , India
| |
Collapse
|