1
|
Smolyaninov IV, Poddel'sky AI, Burmistrova DA, Voronina YK, Pomortseva NP, Polovinkina MA, Almyasheva NR, Zamkova MA, Berberova NT, Eremenko IL. The Synthesis and Biological Activity of Organotin Complexes with Thio-Schiff Bases Bearing Phenol Fragments. Int J Mol Sci 2023; 24:ijms24098319. [PMID: 37176027 PMCID: PMC10179258 DOI: 10.3390/ijms24098319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
A number of novel di- and triorganotin(IV) complexes 1-5 (Ph2SnL1, Ph2SnL2, Et2SnL2, Ph3SnL3, Ph3SnL4) with mono- or dianionic forms of thio-Schiff bases containing antioxidant sterically hindered phenol or catechol fragments were synthesized. Compounds 1-5 were characterized by 1H, 13C NMR, IR spectroscopy, and elemental analysis. The molecular structures of complexes 1 and 2 in the crystal state were established by single-crystal X-ray analysis. The antioxidant activity of new complexes as radical scavengers was estimated in DPPH and ABTS assays. It was found that compounds 4 and 5 with free phenol or catechol fragments are more active in these tests than complexes 1-3 with tridentate O,N,S-coordinated ligands. The effect of compounds 1-5 on the promoted oxidative damage of the DNA by 2,2'-azobis(2-amidinopropane) dihydrochloride and in the process of rat liver (Wistar) homogenate lipid peroxidation in vitro was determined. Complexes 4 and 5 were characterized by more pronounced antioxidant activity in the reaction of lipid peroxidation in vitro than compounds 1-3. The antiproliferative activity of compounds 1-5 was investigated against MCF-7, HTC-116, and A-549 cell lines by an MTT test. The values of IC50 are significantly affected by the presence of free antioxidant fragments and the coordination site for binding.
Collapse
Affiliation(s)
- Ivan V Smolyaninov
- Chemistry Department, Astrakhan State Technical University, 16 Tatisheva Str., 414056 Astrakhan, Russia
| | - Andrey I Poddel'sky
- Chemistry Department, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Daria A Burmistrova
- Chemistry Department, Astrakhan State Technical University, 16 Tatisheva Str., 414056 Astrakhan, Russia
| | - Yulia K Voronina
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii Prospekt 31, 119071 Moscow, Russia
| | - Nadezhda P Pomortseva
- Chemistry Department, Astrakhan State Technical University, 16 Tatisheva Str., 414056 Astrakhan, Russia
| | - Maria A Polovinkina
- Toxicology Research Group of Southern Scientific Centre of Russian Academy of Science, 41 Chekhova Str., 344006 Rostov-on-Don, Russia
| | - Nailya R Almyasheva
- Gause Institute of New Antibiotics, 11/1 Bolshaya Pirogovskaya Str., 119021 Moscow, Russia
| | - Maria A Zamkova
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Kashirskoe sh., 24, 115478 Moscow, Russia
| | - Nadezhda T Berberova
- Chemistry Department, Astrakhan State Technical University, 16 Tatisheva Str., 414056 Astrakhan, Russia
| | - Igor L Eremenko
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii Prospekt 31, 119071 Moscow, Russia
| |
Collapse
|
2
|
Ullah S, Sirajuddin M, Ullah Z, Mushtaq A, Naz S, Zubair M, Haider A, Ali S, Kubicki M, Wani TA, Zargar S, Rehman MU. Synthesis, Structural Elucidation and Pharmacological Applications of Cu(II) Heteroleptic Carboxylates. Pharmaceuticals (Basel) 2023; 16:ph16050693. [PMID: 37242476 DOI: 10.3390/ph16050693] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023] Open
Abstract
Six heteroleptic Cu(II) carboxylates (1-6) were prepared by reacting 2-chlorophenyl acetic acid (L1), 3-chlorophenyl acetic acid (L2), and substituted pyridine (2-cyanopyridine and 2-chlorocyanopyridine). The solid-state behavior of the complexes was described via vibrational spectroscopy (FT-IR), which revealed that the carboxylate moieties adopted different coordination modes around the Cu(II) center. A paddlewheel dinuclear structure with distorted square pyramidal geometry was elucidated from the crystal data for complexes 2 and 5 with substituted pyridine moieties at the axial positions. The presence of irreversible metal-centered oxidation reduction peaks confirms the electroactive nature of the complexes. A relatively higher binding affinity was observed for the interaction of SS-DNA with complexes 2-6 compared to L1 and L2. The findings of the DNA interaction study indicate an intercalative mode of interaction. The maximum inhibition against acetylcholinesterase enzyme was caused for complex 2 (IC50 = 2 µg/mL) compared to the standard drug Glutamine (IC50 = 2.10 µg/mL) while the maximum inhibition was found for butyrylcholinesterase enzyme by complex 4 (IC50 = 3 µg/mL) compared to the standard drug Glutamine (IC50 = 3.40 µg/mL). The findings of the enzymatic activity suggest that the under study compounds have potential for curing of Alzheimer's disease. Similarly, complexes 2 and 4 possess the maximum inhibition as revealed from the free radical scavenging activity performed against DPPH and H2O2.
Collapse
Affiliation(s)
- Shaker Ullah
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Sirajuddin
- Department of Chemistry, University of Science and Technology Bannu, Bannu 28100, Pakistan
| | - Zafran Ullah
- Department of Chemistry, University of Science and Technology Bannu, Bannu 28100, Pakistan
| | - Afifa Mushtaq
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Saba Naz
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Zubair
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Ali Haider
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Saqib Ali
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Maciej Kubicki
- Department of Chemistry, Adam Mickiewicz University in Poznan, 61-712 Poznan, Poland
| | - Tanveer A Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Seema Zargar
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11451, Saudi Arabia
| | | |
Collapse
|
3
|
Antonenko TA, Gracheva YA, Shpakovsky DB, Vorobyev MA, Mazur DM, Tafeenko VA, Oprunenko YF, Shevtsova EF, Shevtsov PN, Nazarov AA, Milaeva ER. Biological Activity of Novel Organotin Compounds with a Schiff Base Containing an Antioxidant Fragment. Int J Mol Sci 2023; 24:ijms24032024. [PMID: 36768345 PMCID: PMC9916890 DOI: 10.3390/ijms24032024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
A series of novel organotin(IV) complexes on the base of 2-(N-3',5'-di-tert-butyl-4'-hydroxyphenyl)-iminomethylphenol (L) of formulae Me2SnBr2(L)2 (1), Bu2SnCl2(L)2(2), Ph2SnCl2(L) (3), Ph2SnCl2(L)2 (4) Ph3SnBr(L)2 (5) were synthesized and characterized by 1H, 13C, 119Sn NMR, IR, ESI-MS and elemental analysis. The crystal structures of initial L and complex 2 were determined by XRD method. It was found that L crystallizes in the orthorhombic syngony. The distorted octahedron geometry around Sn center is observed in the structure of complex 2. Intra- and inter-molecular hydrogen bonds were found in both structures. The antioxidant activity of new complexes as reducing agents, radical scavengers and lipoxygenase inhibitors was estimated spectrophotometrically in CUPRAC and DPPH tests (compounds 1 and 5 were found to be the most active in both methods), and in the process of enzymatic oxidation in vitro of linoleic acid under the action of lipoxygenase LOX 1-B (EC50 > 33.3 μM for complex 2). Furthermore, compounds 1-5 have been investigated for their antiproliferative activity in vitro towards HCT-116, MCF-7 and A-549 and non-malignant WI-38 human cell lines. Complexes 2 and 5 demonstrated the highest activity. The plausible mechanisms of the antiproliferative activity of compounds, including the influence on the polymerization of Tb+MAP, are discussed. Some of the synthesized compounds have also actively induced apoptosis and blocked proliferation in the cell cycle G2/M phase.
Collapse
Affiliation(s)
- Taisiya A. Antonenko
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Yulia A. Gracheva
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Dmitry B. Shpakovsky
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Mstislav A. Vorobyev
- Institute of Geography of the Russian Academy of Sciences, Department of Glaciology, 117312 Moscow, Russia
| | - Dmitrii M. Mazur
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Victor A. Tafeenko
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Yury F. Oprunenko
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Elena F. Shevtsova
- Institute of Physiologically Active Compounds of Russian Academy of Sciences, 142432 Chernogolovka, Russia
| | - Pavel N. Shevtsov
- Institute of Physiologically Active Compounds of Russian Academy of Sciences, 142432 Chernogolovka, Russia
| | - Alexey A. Nazarov
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
- Correspondence:
| | - Elena R. Milaeva
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| |
Collapse
|
4
|
Milaeva ER, Shpakovsky DB, Radchenko EV, Palyulin VA, Babkov DA, Borisov AV, Dodokhova MA, Safronenko AV, Kotieva IM, Spasov AA. Organotin compound as an inhibitor of nitric oxide formation. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3689-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
5
|
Nikitin E, Mironova E, Shpakovsky D, Gracheva Y, Koshelev D, Utochnikova V, Lyssenko K, Oprunenko Y, Yakovlev D, Litvinov R, Seryogina M, Spasov A, Milaeva E. Cytotoxic and Luminescent Properties of Novel Organotin Complexes with Chelating Antioxidant Ligand. Molecules 2022; 27:molecules27238359. [PMID: 36500450 PMCID: PMC9741287 DOI: 10.3390/molecules27238359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
A novel polydentate chelating antioxidant ligand and series of organotin complexes on its base were synthesized and characterized by NMR 1H, 13C, 119Sn, IR spectroscopy, X-ray, and elemental analysis. Their antioxidant activity was evaluated in DPPH and NBT-tests, and as lipoxygenase inhibitory activity. It was shown that ligand alone is a radical scavenger, while introducing tin in the structure of the compound significantly decreases its activity. For the ligand alone the ability to strongly suppress the formation of advanced glycation end products (AGEs) was shown, which may be associated with the established antiradical activity. All synthesized compounds appeared to be moderate lipoxygenase inhibitors. The stability of compounds to hydrolysis under different pH was estimated. The ligand undergoes decomposition after about an hour, while organotin complexes on its base demonstrate vast stability, showing signs of decomposition only after 5 h of experimentation. Cytotoxicity of compounds was studied by standard MTT-test, which showed unorthodox results: the ligand itself demonstrated noticeable cytotoxicity while the introduction of organotin moiety either did not affect the toxicity levels or reduced them instead of increasing. Organotin complexes possess luminescence both as powders and DMSO solutions, its quantum yields reaching 67% in DMSO. The combination of luminescence with unique cytotoxic properties allows us to propose the synthesized compounds as perspective theranostic agents.
Collapse
Affiliation(s)
- Evgeny Nikitin
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Ekaterina Mironova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Dmitry Shpakovsky
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Yulia Gracheva
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Daniil Koshelev
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Valentina Utochnikova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Konstantin Lyssenko
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Yury Oprunenko
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Dmitry Yakovlev
- Department of Pharmacology and Bioinformatics, Volgograd State Medical University, 1 Pavshikh Bortsov Sq., Volgograd 400131, Russia
| | - Roman Litvinov
- Department of Pharmacology and Bioinformatics, Volgograd State Medical University, 1 Pavshikh Bortsov Sq., Volgograd 400131, Russia
| | - Mariya Seryogina
- Department of Pharmacology and Bioinformatics, Volgograd State Medical University, 1 Pavshikh Bortsov Sq., Volgograd 400131, Russia
| | - Alexander Spasov
- Department of Pharmacology and Bioinformatics, Volgograd State Medical University, 1 Pavshikh Bortsov Sq., Volgograd 400131, Russia
| | - Elena Milaeva
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
- Correspondence: ; Tel.: +7-(495)939-52-49
| |
Collapse
|
6
|
Xing A, Zeng D, Chen Z. Synthesis, crystal structure and antioxidant activity of butylphenol Schiff bases: Experimental and DFT study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
7
|
Dodokhova MA, Safronenko AV, Kotieva IM, Alkhuseyn-Kulyaginova MS, Shpakovsky DB, Milaeva ER. Evaluation of the pharmacological activity of hybrid organotin compounds in a B16 melanoma model in the classical and metronomic administration modes. RESEARCH RESULTS IN PHARMACOLOGY 2022. [DOI: 10.3897/rrpharmacology.8.76363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: In modern medical chemistry, much attention is paid to the search for new antimetastatic agents based on metal compounds. Organotin compounds promise to be good candidates as the treatment of malignant neoplasms. In order to reduce a possible nonspecific toxic effect of tin compounds and to expand the intended therapeutic use, the paper presents hybrid tin (IV) complexes with Sn-S bond containing a fragment of 2,6-di-tert-butylphenol. The aim of the study was to evaluate the antitumor and antimetastatic effects of bis (3,5-di-tert-butyl-4-hydroxyphenylthiolate) dimethylolol (Me3) and (3,5-di-tert-butyl-4-hydroxyphenylthiolate) triphenylolol (Me5) in a model of transplanted melanoma tumor in B16 mice in classical and metronomic administration mode.
Materials and methods: The efficacy of organotin compounds was studied in a model of a transplanted tumor with spontaneous metastasis of C57Bl/6 (female) melanoma B16 mice using the following indicators: average life expectancy, inhibition of tumor growth by weight, tumor mass, and metastasis inhibition index.
Results and discussion: The most pronounced antimetastatic effect (54% and 36%) is achieved with a five-fold intraperitoneal injection of Me3 and Me5 at the total doses of 375 mg/kg and 250 mg/kg. The comparable results of the efficacy were obtained in the classical and metronomic modes of the injection of hybrid organotin compounds. With an increase in the injected dose, there is an effect of activating the tumor process with the generalized metastasis.
Conclusion: Bis dimethylolol (Me3) and triphenylolol (Me5) compounds demonstrate both a pronounced antimetastatic activity and a multidirectional effect on the growth of the primary focus and the metastasis in lungs, depending on an injected dose.
Collapse
|
8
|
Antonenko T, Gracheva Y, Shpakovsky D, Vorobyev M, Tafeenko V, Mazur D, Milaeva E. Cytotoxic activity of organotin compounds containing non-steroidal anti-inflammatory drugs. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2021.122191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Saroya S, Asija S, Kumar N, Deswal Y, devi J. Organotin (IV) complexes derived from tridentate Schiff base ligands: Synthesis, spectroscopic analysis, antimicrobial and antioxidant activity. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Kaur K, Singh R, Kaur V, Capalash N. Water stable fluorescent organotin( iv) compounds: aggregation induced emission enhancement and recognition of lead ions in an aqueous system. NEW J CHEM 2022. [DOI: 10.1039/d1nj04612h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Water stable fluorescent organotin(iv) compounds are investigated for their structural aspects, aggregation-induced emission enhancement (AIEE) properties and ability to recognize lead ions in the aqueous medium.
Collapse
Affiliation(s)
- Kulwinder Kaur
- Department of Chemistry, Panjab University, Sector-14, Chandigarh-160014, India
| | - Raghubir Singh
- Department of Chemistry, DAV College, Sector 10, Chandigarh-160011, India
| | - Varinder Kaur
- Department of Chemistry, Panjab University, Sector-14, Chandigarh-160014, India
| | - Neena Capalash
- Department of Biotechnology, Panjab University, Chandigarh-160014, India
| |
Collapse
|
11
|
Dodokhova MA, Safronenko AV, Kotieva IM, Alkhuseyn-Kulyaginova MS, Shpakovsky DB, Milaeva ER. Impact of organotin compounds on the growth of epidermoid Lewis carcinoma. RESEARCH RESULTS IN PHARMACOLOGY 2021. [DOI: 10.3897/rrpharmacology.7.71455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: Search for new compounds with a broad antitumor and antimetastatic potency due to multiple targeting remains important in medicinal chemistry, pharmacology and oncology. We report the efficacy of hybrid organotin agents bis-(3,5-di-tert-butyl-4-hydroxyphenylthiolate) dimethyltin (Ме3) and (3,5-di-tert-butyl-4-hydroxyphenylthiolate) triphenyltin (Ме5).
Materials and methods: The compounds were administered to mice bearing the spontaneously metastatic epidermoid Lewis lung carcinoma (LLC). The efficacy of the treatment was evaluated by mean life span, percentage of tumor growth inhibition, number of lung metastases, frequency of metastasis, tumor weight 21 days after tumor cell inoculation, and a degree of lung damage according to the method of D. Tarin and J.E. Price.
Results and discussion: For new organotin compounds containing an antioxidant protective fragment of 2,6-di-tert-butylphenol, moderate antitumor and pronounced antimetastatic effects were revealed in the Lewis model of epidermoid lung carcinoma; more active for Me5. Some features of the development of the process of metastasis were recorded with the introduction of various doses of hybrid organotin compounds.
Conclusion: Substances Ме3 and Ме5 possess specific activity on the model under investigation, which allows one to suggest these organotins as promising series of antitumor and antimetastatic agents with multiple targeting mode of action.
Collapse
|
12
|
Kapila A, Kaur M, Kaur H. Organotin(IV) complexes of tridentate (O,N,O) Schiff base ligand: computational, spectroscopic and biological studies. ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.matpr.2020.04.080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Galván-Hidalgo JM, Roldán-Marchán DM, González-Hernández A, Ramírez-Apan T, Nieto-Camacho A, Hernández-Ortega S, Gómez E. Organotin (IV) complexes from Schiff bases ligands based on 2-amino-3-hydroxypyridine: synthesis, characterization, and cytotoxicity. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02630-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Heydari R, Motieiyan E, Abdolmaleki S, Aliabadi A, Ghadermazi M, Bagheri F, Amiri Rudbari H. Synthesis, X-ray crystal structure, thermal behavior and evaluation as anin vitrocytotoxic agent of a tin(IV) complex containing dipicolinic acid. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1814955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Rouhollah Heydari
- Research Center for Environmental Determinants of Health, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Motieiyan
- Department of Chemistry, Payame Noor University, Tehran, Iran
| | - Sara Abdolmaleki
- Research Center for Environmental Determinants of Health, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Alireza Aliabadi
- Pharmaceutical Sciences Research Center, Health Institute, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Ghadermazi
- Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| | - Fereshteh Bagheri
- Pharmaceutical Sciences Research Center, Health Institute, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | |
Collapse
|
15
|
Milaeva ER, Shpakovsky DB, Gracheva YA, Antonenko TA, Ksenofontova TD, Nikitin EA, Berseneva DA. Novel selective anticancer agents based on Sn and Au complexes. Mini-review. PURE APPL CHEM 2020. [DOI: 10.1515/pac-2019-1209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Cancer is one of the most common causes of death in modern medicine. Molecular design of novel substances with pharmacological activity is one of the goals of medicinal inorganic chemistry. Platinum complexes are widely used in the treatment of cancer, despite high efficacy their use is limited by side effects, as well as primary or acquired resistance. In this regard, the search for novel metal-containing antitumor compounds is underway. Organotins and gold compounds are promising pharmacological agents with anti-cancer properties. The introduction of protective antioxidant fragments into inorganic compounds molecules is a way to reduce the side effects of anti-cancer drugs on healthy cells. 2,6-dialkylphenols belonging to vitamin E (α-tocopherol) mimetics are widely used as antioxidants and stabilizers. The properties of Ph3SnCl (Sn-I), Ph3PAuCl (Au-I) and complexes Ph3SnSR (Sn-II) and Ph3PAuSR (Au-II) based on 2,6-di-tert-butyl-4-mercaptophenol (RSH) as radical scavengers and reducing agents were studied in model reactions. For Sn-II and Au-II the comparative study of cytotoxic action was made and the IC50 values on different cancer cell lines were found to be depended on the nature of metal. In general, Sn(IV) complexes possessed higher cytotoxicity than Au(I) complexes. In order to clarify the mechanism of cytotoxic mode of action the effect of compounds on Fe3+-induced lipid peroxidation, mitochondrial potential and mitochondrial permeability, cell cycle and induction of apoptosis was studied. Organotin compounds can bind tubulin SH-groups and inhibit its polymerization by a dose-dependent mechanism, whereas gold compounds inhibit Thioredoxin reductase (TrxR). In vivo experiments on acute toxicity of Sn-II and Au-II proved their moderate toxic action that opens prospects for the further study as antitumor agents.
Collapse
Affiliation(s)
- Elena R. Milaeva
- Lomonosov Moscow State University, Department of Chemistry , Leninskie Gory 1-3, 119991 , Moscow , Russian Federation
- Institute of Physiologically Active Compounds of Russian Academy of Sciences , Chernogolovka , Severny pr. 1, 142432 , Russia
| | - Dmitry B. Shpakovsky
- Lomonosov Moscow State University , Department of Chemistry , Moscow , Russian Federation
| | - Yulia A. Gracheva
- Lomonosov Moscow State University , Department of Chemistry , Moscow , Russian Federation
| | - Taisiya A. Antonenko
- Lomonosov Moscow State University , Department of Chemistry , Moscow , Russian Federation
| | | | - Evgeny A. Nikitin
- Lomonosov Moscow State University , Department of Chemistry , Moscow , Russian Federation
| | - Daria A. Berseneva
- Lomonosov Moscow State University , Department of Chemistry , Moscow , Russian Federation
| |
Collapse
|
16
|
Antonenko T, Shpakovsky D, Berseneva D, Gracheva Y, Dubova L, Shevtsov P, Redkozubova O, Shevtsova E, Tafeenko V, Aslanov L, Milaeva E. Cytotoxic activity of organotin carboxylates based on synthetic phenolic antioxidants and polycyclic bile acids. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2019.121089] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Vinayak R, Nayek HP. Selective sensing of a Cu(ii) ion by organotin anchored keto-enamine ligands. NEW J CHEM 2019. [DOI: 10.1039/c9nj03204e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New organotin carboxylates [{(n-Bu)2Sn(HL)}2O]2 (1), [(t-Bu)2Sn(HL)2] (2) and [Ph3Sn(HL)] (3) have been synthesized and used for sensing of Cu(ii) ion. Complex 3 shows highest binding constant and better limit of detection than other complexes.
Collapse
Affiliation(s)
- Richa Vinayak
- Department of Chemistry
- Indian Institute of Technology (Indian School of Mines) Dhanbad
- Dhanbad-826004
- India
| | - Hari Pada Nayek
- Department of Chemistry
- Indian Institute of Technology (Indian School of Mines) Dhanbad
- Dhanbad-826004
- India
| |
Collapse
|