1
|
Miyah Y, El Messaoudi N, Benjelloun M, Georgin J, Franco DSP, El-Habacha M, Ali OA, Acikbas Y. A comprehensive review of β-cyclodextrin polymer nanocomposites exploration for heavy metal removal from wastewater. Carbohydr Polym 2025; 350:122981. [PMID: 39647935 DOI: 10.1016/j.carbpol.2024.122981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/18/2024] [Accepted: 11/11/2024] [Indexed: 12/10/2024]
Abstract
This review focuses on the application of β-cyclodextrin (β-CD) polymer nanocomposites (NCs) in the heavy metals (HMs) removal from contaminated water sources. This manuscript's originality consists of an in-depth analysis of recent advances in using β-cyclodextrin nanocomposites (β-CD-NCs) to remove HMs from wastewater, highlighting literature gaps, innovations, and challenges in this field, suggesting perspectives on existing theories, and outlining implications for future research directions. Combining nanoparticles with the β-CD polymer yields stable, reusable β-CD-NCs that are effective and efficient in HM adsorption. The article reviews the various techniques for synthesizing β-CD-NCs and their structural characterization. It also includes processing and functionalization strategies to optimize binding capacity and selectivity for specific HMs. The paper reviews mechanisms underpinning HM adsorption through complexation, ion exchange, and electrostatic interactions. It also reviews how adsorption efficiency is affected by different environmental conditions, such as variations in pH, temperature, and competing ions. This will enable case studies on the applications of β-CD-NCs, particularly for addressing global water pollution. Finally, the current limitations and future perspectives are considered, focusing on the further research needed to optimize these materials for sustainable and cost-effective HM removal on a large scale.
Collapse
Affiliation(s)
- Youssef Miyah
- Ministry of Health and Social Protection, Higher Institute of Nursing Professions and Health Techniques, Fez, Morocco; Laboratory of Materials, Processes, Catalysis, and Environment, Higher School of Technology, Sidi Mohamed Ben Abdellah University, Fez, Morocco.
| | - Noureddine El Messaoudi
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Ibn Zohr University, 80000 Agadir, Morocco
| | - Mohammed Benjelloun
- Laboratory of Materials, Processes, Catalysis, and Environment, Higher School of Technology, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Jordana Georgin
- Department of Civil and Environmental, Universidad de la Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia
| | - Dison Stracke Pfingsten Franco
- Department of Civil and Environmental, Universidad de la Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia
| | - Mohamed El-Habacha
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Ibn Zohr University, 80000 Agadir, Morocco
| | - Oumaima Ait Ali
- Laboratory of Materials, Processes, Catalysis, and Environment, Higher School of Technology, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Yaser Acikbas
- Department of Materials Science and Nanotechnology Engineering, Usak University, 64200 Usak, Turkey
| |
Collapse
|
2
|
Lin HC, Liu YJ, Yao DJ. Preparation of magnetic microalgae composites for heavy metal ions removal from water. Heliyon 2024; 10:e37445. [PMID: 39309958 PMCID: PMC11416482 DOI: 10.1016/j.heliyon.2024.e37445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Hexavalent chromium Cr(VI) and divalent Copper Cu(II) ions were heavy metals that were severely toxic to organisms and aquatic ecosystems. Algae is considered as an eco-friendly and cost-effective method for heavy metal ions treatment, but there are still some disadvantages to be improved. Therefore, In this paper, we combine microalgae biomass with ferric oxide magnetic nanoparticles (MNPs) to prepare a more widely applicable adsorbent. Box-Behnken design (BBD) was evaluated for exploring the significant parameters for maximum adsorption in a binary Cr(VI) and Cu(II) solution using our synthesized MNPs@Algae (M@A) adsorbent and constructed a predictability of 88.84 and 95.6 % quadratic regression model, through ANOVA, Pareto Chart of the standardized effects, Three-dimensional surface plot, desirability function to analysis and discussion each factor further. The combined results from UV-Vis, FTIR, TGA, and SQUID measurements confirmed the successful synthesis and accurate properties of the MNPs@Algae composites. The experiment results indicated that when initial pH 6, 5 mg/L Cr(VI), 20 mg/L Cu(II), M@A(3 : 3), dose (1 g/L), and contact time 6 h can achieve the maximum 58 % Cr(VI) and 73.4 % Cu(II) removal efficiency. M@A can eliminate Cr(VI) and Cu(II) from binary solution and separate them from the solution within a few seconds by a permanent magnet as a feasible and efficient absorbent.
Collapse
Affiliation(s)
- Huan-Cheng Lin
- Department of Power Mechanical Engineering, National Tsing Huiversity, Hsinchu, Taiwan
| | - Yi-Ju Liu
- Food Industry Research and Development Institute, Hsinchu, Taiwan
| | - Da-Jeng Yao
- Department of Power Mechanical Engineering, National Tsing Huiversity, Hsinchu, Taiwan
- Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Taiwan
| |
Collapse
|
3
|
Miyah Y, El Messaoudi N, Benjelloun M, Acikbas Y, Şenol ZM, Ciğeroğlu Z, Lopez-Maldonado EA. Advanced applications of hydroxyapatite nanocomposite materials for heavy metals and organic pollutants removal by adsorption and photocatalytic degradation: A review. CHEMOSPHERE 2024; 358:142236. [PMID: 38705409 DOI: 10.1016/j.chemosphere.2024.142236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/27/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
This comprehensive review delves into the forefront of scientific exploration, focusing on hydroxyapatite-based nanocomposites (HANCs) and their transformative role in the adsorption of heavy metals (HMs) and organic pollutants (OPs). Nanoscale properties, including high surface area and porous structure, contribute to the enhanced adsorption capabilities of HANCs. The nanocomposites' reactive sites facilitate efficient contaminant interactions, resulting in improved kinetics and capacities. HANCs exhibit selective adsorption properties, showcasing the ability to discriminate between different contaminants. The eco-friendly synthesis methods and potential for recyclability position the HANCs as environmentally friendly solutions for adsorption processes. The review acknowledges the dynamic nature of the field, which is characterized by continuous innovation and a robust focus on ongoing research endeavors. The paper highlights the HANCs' selective adsorption capabilities of various HMs and OPs through various interactions, including hydrogen and electrostatic bonding. These materials are also used for aquatic pollutants' photocatalytic degradation, where reactive hydroxyl radicals are generated to oxidize organic pollutants quickly. Future perspectives explore novel compositions, fabrication methods, and applications, driving the evolution of HANCs for improved adsorption performance. This review provides a comprehensive synthesis of the state-of-the-art HANCs, offering insights into their diverse applications, sustainability aspects, and pivotal role in advancing adsorption technologies for HMs and OPs.
Collapse
Affiliation(s)
- Youssef Miyah
- Laboratory of Materials, Processes, Catalysis, and Environment, Higher School of Technology, University Sidi Mohamed Ben Abdellah, Fez-Morocco, Morocco; Ministry of Health and Social Protection, Higher Institute of Nursing Professions and Health Techniques, Fez-Morocco, Morocco.
| | - Noureddine El Messaoudi
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Ibn Zohr University, 80000, Agadir, Morocco.
| | - Mohammed Benjelloun
- Laboratory of Materials, Processes, Catalysis, and Environment, Higher School of Technology, University Sidi Mohamed Ben Abdellah, Fez-Morocco, Morocco
| | - Yaser Acikbas
- Department of Materials Science and Nanotechnology Engineering, Usak University, 64200, Usak, Turkey
| | - Zeynep Mine Şenol
- Sivas Cumhuriyet University, Faculty of Health Sciences, Department of Nutrition and Diet, 58140, Sivas, Turkey
| | - Zeynep Ciğeroğlu
- Department of Chemical Engineering, Faculty of Engineering, Usak University, 64300, Usak, Turkey
| | - Eduardo Alberto Lopez-Maldonado
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja, California, CP: 22390, Tijuana, Baja California, Mexico
| |
Collapse
|
4
|
Mondal S, Park S, Choi J, Vu TTH, Doan VHM, Vo TT, Lee B, Oh J. Hydroxyapatite: A journey from biomaterials to advanced functional materials. Adv Colloid Interface Sci 2023; 321:103013. [PMID: 37839281 DOI: 10.1016/j.cis.2023.103013] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/17/2023]
Abstract
Hydroxyapatite (HAp), a well-known biomaterial, has witnessed a remarkable evolution over the years, transforming from a simple biocompatible substance to an advanced functional material with a wide range of applications. This abstract provides an overview of the significant advancements in the field of HAp and its journey towards becoming a multifunctional material. Initially recognized for its exceptional biocompatibility and bioactivity, HAp gained prominence in the field of bone tissue engineering and dental applications. Its ability to integrate with surrounding tissues, promote cellular adhesion, and facilitate osseointegration made it an ideal candidate for various biomedical implants and coatings. As the understanding of HAp grew, researchers explored its potential beyond traditional biomaterial applications. With advances in material synthesis and engineering, HAp began to exhibit unique properties that extended its utility to other disciplines. Researchers successfully tailored the composition, morphology, and surface characteristics of HAp, leading to enhanced mechanical strength, controlled drug release capabilities, and improved biodegradability. These modifications enabled the utilization of HAp in drug delivery systems, biosensors, tissue engineering scaffolds, and regenerative medicine applications. Moreover, the exceptional biomineralization properties of HAp allowed for the incorporation of functional ions and molecules during synthesis, leading to the development of bioactive coatings and composites with specific therapeutic functionalities. These functionalized HAp materials have demonstrated promising results in antimicrobial coatings, controlled release systems for growth factors and therapeutic agents, and even as catalysts in chemical reactions. In recent years, HAp nanoparticles and nanostructured materials have emerged as a focal point of research due to their unique physicochemical properties and potential for targeted drug delivery, imaging, and theranostic applications. The ability to manipulate the size, shape, and surface chemistry of HAp at the nanoscale has paved the way for innovative approaches in personalized medicine and regenerative therapies. This abstract highlights the exceptional evolution of HAp, from a traditional biomaterial to an advanced functional material. The exploration of novel synthesis methods, surface modifications, and nanoengineering techniques has expanded the horizon of HAp applications, enabling its integration into diverse fields ranging from biomedicine to catalysis. Additionally, this manuscript discusses the emerging prospects of HAp-based materials in photocatalysis, sensing, and energy storage, showcasing its potential as an advanced functional material beyond the realm of biomedical applications. As research in this field progresses, the future holds tremendous potential for HAp-based materials to revolutionize medical treatments and contribute to the advancement of science and technology.
Collapse
Affiliation(s)
- Sudip Mondal
- Digital Healthcare Research Center, Institute of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea
| | - Sumin Park
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Jaeyeop Choi
- Smart Gym-Based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Republic of Korea
| | - Thi Thu Ha Vu
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Vu Hoang Minh Doan
- Smart Gym-Based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Republic of Korea
| | - Truong Tien Vo
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Byeongil Lee
- Digital Healthcare Research Center, Institute of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea; Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea.
| | - Junghwan Oh
- Digital Healthcare Research Center, Institute of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea; Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea; Smart Gym-Based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Republic of Korea; Ohlabs Corp., Busan 48513, Republic of Korea.
| |
Collapse
|
5
|
Khalid S, Chaudhary MN, Nazir R, Ahmad SR, Hussain N, Ayub Y, Ibrar M. Biochar supported metallo-inorganic nanocomposite: A green approach for decontamination of heavy metals from water. PLoS One 2023; 18:e0289069. [PMID: 37708189 PMCID: PMC10501632 DOI: 10.1371/journal.pone.0289069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/11/2023] [Indexed: 09/16/2023] Open
Abstract
Heavy metal contamination of water has become a global environmental burden, which has stirred up agitation worldwide. Fabrication of adsorbents utilizing either low cost, environment friendly materials or waste products can be helpful in remediating environmental pollution. The current study evolved around the synthesis of nanocomposites derived from such raw precursors like spent tea waste biochar, hydroxyapatite, and clays. In this context, two nanocomposites, namely manganese ferrite doped hydroxyapatite/kaolinite/biochar (TK-NC) and manganese ferrite doped hydroxyapatite/vermiculite/biochar (TV-NC), were synthesized followed by their employment for decontamination of heavy metals from aqueous media. TK-NC and TV-NC exhibited the crystallite sizes in the range of 2.55-5.94 nm as obtained by Debye Scherrer Equation and Williamsons-Hall equation The fabricated nanocomposites were characterized using FT-IR, SEM-EDX, and powder XRD. Batch adsorption studies were performed, and influence of different adsorption parameters (contact time, reaction temperature, solution pH, adsorbent dose, and initial adsorbate concentration) on metal adsorption was examined. Thermodynamic studies revealed that the adsorption of Cr(VI), Ni(II) and Cu(II) on TK-NC and TV-NC was endothermic (+ΔH°) and indicates disorderness (+ΔS°) at the solid-liquid interface owing to the strong affinity of metal ions with adsorbent. The heavy metal uptake selectivity followed the following decreasing order; Cr(VI) > Cu(II) > Ni(II) by both nanocomposites, with adsorption capacities falling in the range of 204.68-343.05 mg g-1. Several adsorption kinetic and isotherm models were applied to experimentally calculated data, which suggest favorable adsorption of Cr(VI), Ni(II) and Cu(II) by TK-NC and TV-NC from the system while obeying general-order kinetics and R-P adsorption model, conferring the transition in adsorption kinetics order and involvement of multiple adsorption process.
Collapse
Affiliation(s)
- Sana Khalid
- College of Earth & Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammad Nawaz Chaudhary
- Department of Environmental Sciences & Policy, Lahore School of Economics (LSE), Lahore, Pakistan
| | - Rabia Nazir
- Pakistan Council of Scientific and Industrial Research Laboratories Complex, Lahore, Pakistan
| | - Sajid Rashid Ahmad
- College of Earth & Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - Naqi Hussain
- Department of Environmental Sciences & Policy, Lahore School of Economics (LSE), Lahore, Pakistan
| | - Yaseen Ayub
- Department of Chemistry, Forman Christian College, Lahore, Punjab, Pakistan
| | - Muhammad Ibrar
- Department of Chemistry, Lahore Garrison University, Lahore, Pakistan
| |
Collapse
|
6
|
Wu S, Li K, Shi W, Cai J. Preparation and performance evaluation of chitosan/polyvinylpyrrolidone/polyvinyl alcohol electrospun nanofiber membrane for heavy metal ions and organic pollutants removal. Int J Biol Macromol 2022; 210:76-84. [PMID: 35533844 DOI: 10.1016/j.ijbiomac.2022.05.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/21/2022] [Accepted: 05/03/2022] [Indexed: 12/20/2022]
Abstract
In this work, a novel electrospun chitosan (CS)/polyvinylpyrrolidone (PVP)/polyvinyl alcohol (PVA) nanofibrous membrane was prepared to remove heavy metal ions and organic pollutants from water. The nanofiber morphologies were adjusted through the optimal electrospinning process parameters. Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM) characterizations indicated that a well-crosslinked CS/PVP/PVA nanofiber film was formed. Under the optimize conditions, the obtained CS/PVP/PVA nanofiber membranes exhibited porous and uniform nanofibrous structures with an average diameter of 160 nm and a pure water permeability of 4518.91 L·m-2·h-1·bar-1. In addition, the adsorption and separation performance of CS/PVP/PVA nanofiber membranes were evaluated with Cu(II), Ni(II), Cd(II), Pb(II) and Methylene Blue (MB), Malachite Green (MG) as target ions and dyes. The results showed that the retention rate of CS/PVP/PVA nanofiber membranes for Cu(II), Ni(II), Cd(II), Pb(II), MG and MB can reach 94.20%, 90.35%, 83.33%, 80.12%, 84.01% and 69.91%, respectively. The adsorption capacities of Cu(II), Ni(II), Cd(II), Pb(II), MG and MB were 34.79, 25.24, 18.07, 16.05, 17.86 and 13.27 mg g-1. The adsorption kinetics of heavy metal ions and dyes by the nanofiber membranes can be explained by the Langmuir isotherm model and represented by the pseudo-second-order kinetic mechanism that determined the spontaneous chemisorption process. This study provides a synthetic approach to membranes for the removal of organic and heavy metal micropollutants from water.
Collapse
Affiliation(s)
- Shuping Wu
- Research School of Polymeric Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, PR China.
| | - Kanghui Li
- Research School of Polymeric Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, PR China
| | - Weijian Shi
- Research School of Polymeric Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, PR China
| | - Jiawei Cai
- Research School of Polymeric Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, PR China
| |
Collapse
|
7
|
Bayatloo MR, Nojavan S. Rapid and simple magnetic solid-phase extraction of bisphenol A from bottled water, baby bottle, and urine samples using green magnetic hydroxyapatite/β-cyclodextrin polymer nanocomposite. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Marycz K, Kornicka-Garbowska K, Patej A, Sobierajska P, Kotela A, Turlej E, Kepska M, Bienko A, Wiglusz RJ. Aminopropyltriethoxysilane (APTES)-Modified Nanohydroxyapatite (nHAp) Incorporated with Iron Oxide (IO) Nanoparticles Promotes Early Osteogenesis, Reduces Inflammation and Inhibits Osteoclast Activity. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2095. [PMID: 35329547 PMCID: PMC8953252 DOI: 10.3390/ma15062095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/16/2022] [Accepted: 02/23/2022] [Indexed: 12/02/2022]
Abstract
Due to its increased prevalence, osteoporosis (OP) represents a great challenge to health care systems and brings an economic burden. To overcome these issues, treatment plans that suit the need of patients should be developed. One of the approaches focuses on the fabrication of personalized biomaterials, which can restore the balance and homeostasis of disease-affected bone. In the presented study, we fabricated nanometer crystalline hydroxyapatite (nHAp) and iron oxide (IO) nanoparticles stabilized with APTES and investigated whether they can modulate bone cell metabolism and be useful in the fabrication of personalized materials for OP patients. Using a wide range of molecular techniques, we have shown that obtained nHAp@APTES promotes viability and RUNX-2 expression in osteoblasts, as well as reducing activity of critical proinflammatory cytokines while inhibiting osteoclast activity. Materials with APTES modified with nHAp incorporated with IO nanoparticles can be applied to support the healing of osteoporotic bone fractures as they enhance metabolic activity of osteoblasts and diminish osteoclasts' metabolism and inflammation.
Collapse
Affiliation(s)
- Krzysztof Marycz
- The Department of Experimental Biology, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-375 Wroclaw, Poland; (K.K.-G.); (E.T.); (M.K.)
- International Institute of Translational Medicine, Jesionowa 11, Malin, 55-114 Wisznia Mała, Poland
- Collegium Medicum, Cardinal Stefan Wyszynski University (UKSW), Woycickiego 1/3, 01-938 Warsaw, Poland;
| | - Katarzyna Kornicka-Garbowska
- The Department of Experimental Biology, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-375 Wroclaw, Poland; (K.K.-G.); (E.T.); (M.K.)
- International Institute of Translational Medicine, Jesionowa 11, Malin, 55-114 Wisznia Mała, Poland
| | - Adrian Patej
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland; (A.P.); (P.S.)
| | - Paulina Sobierajska
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland; (A.P.); (P.S.)
| | - Andrzej Kotela
- Collegium Medicum, Cardinal Stefan Wyszynski University (UKSW), Woycickiego 1/3, 01-938 Warsaw, Poland;
| | - Eliza Turlej
- The Department of Experimental Biology, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-375 Wroclaw, Poland; (K.K.-G.); (E.T.); (M.K.)
| | - Martyna Kepska
- The Department of Experimental Biology, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-375 Wroclaw, Poland; (K.K.-G.); (E.T.); (M.K.)
| | - Alina Bienko
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie14 Street, 50-383 Wroclaw, Poland;
| | - Rafal J. Wiglusz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland; (A.P.); (P.S.)
| |
Collapse
|
9
|
Liao R, Jiang D, Liu Y, Lv P. Preparation of poly(ε-lysine)-cyclodextrin coated Fe3O4 nanoparticles for selective separation of natural medicine: Scutellarin. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Nguyen MD, Tran HV, Xu S, Lee TR. Fe 3O 4 Nanoparticles: Structures, Synthesis, Magnetic Properties, Surface Functionalization, and Emerging Applications. APPLIED SCIENCES (BASEL, SWITZERLAND) 2021; 11:11301. [PMID: 35844268 PMCID: PMC9285867 DOI: 10.3390/app112311301] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Magnetite (Fe3O4) nanoparticles (NPs) are attractive nanomaterials in the field of material science, chemistry, and physics because of their valuable properties, such as soft ferromagnetism, half-metallicity, and biocompatibility. Various structures of Fe3O4 NPs with different sizes, geometries, and nanoarchitectures have been synthesized, and the related properties have been studied with targets in multiple fields of applications, including biomedical devices, electronic devices, environmental solutions, and energy applications. Tailoring the sizes, geometries, magnetic properties, and functionalities is an important task that determines the performance of Fe3O4 NPs in many applications. Therefore, this review focuses on the crucial aspects of Fe3O4 NPs, including structures, synthesis, magnetic properties, and strategies for functionalization, which jointly determine the application performance of various Fe3O4 NP-based systems. We first summarize the recent advances in the synthesis of magnetite NPs with different sizes, morphologies, and magnetic properties. We also highlight the importance of synthetic factors in controlling the structures and properties of NPs, such as the uniformity of sizes, morphology, surfaces, and magnetic properties. Moreover, emerging applications using Fe3O4 NPs and their functionalized nanostructures are also highlighted with a focus on applications in biomedical technologies, biosensing, environmental remedies for water treatment, and energy storage and conversion devices.
Collapse
Affiliation(s)
- Minh Dang Nguyen
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, TX 77204-5003, USA
| | - Hung-Vu Tran
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, TX 77204-5003, USA
| | - Shoujun Xu
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, TX 77204-5003, USA
| | - T. Randall Lee
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, TX 77204-5003, USA
| |
Collapse
|
11
|
Brazdis RI, Fierascu I, Avramescu SM, Fierascu RC. Recent Progress in the Application of Hydroxyapatite for the Adsorption of Heavy Metals from Water Matrices. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6898. [PMID: 34832297 PMCID: PMC8618790 DOI: 10.3390/ma14226898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/27/2022]
Abstract
Wastewater treatment remains a critical issue globally, despite various technological advancements and breakthroughs. The study of different materials and technologies gained new valences in the last years, in order to obtain cheap and efficient processes, to obtain a cleaner environment for future generations. In this context, the present review paper presents the new achievements in the materials domain with highlights on apatitic materials used for decontamination of water loaded with heavy metals. The main goal of this review is to present the adsorptive removal of heavy metals using hydroxyapatite-based adsorbents, offering a general overview regarding the recent progress in this particular area. Developing the current review, an attempt has been made to give appropriate recognition to the most recent data regarding the synthesis methods and targeted pollutants, including important information regarding the synthesis methods and precursors, morphological characteristics of the adsorbent materials and effectiveness of processes.
Collapse
Affiliation(s)
- Roxana Ioana Brazdis
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 060021 Bucharest, Romania;
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University “Politehnica” of Bucharest, 011061 Bucharest, Romania
| | - Irina Fierascu
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 060021 Bucharest, Romania;
- Faculty of Horticulture, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania
| | - Sorin Marius Avramescu
- Research Center for Environmental Protection and Waste Management, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania;
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90-92 Soseaua Panduri, 050663 Bucharest, Romania
| | - Radu Claudiu Fierascu
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 060021 Bucharest, Romania;
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University “Politehnica” of Bucharest, 011061 Bucharest, Romania
| |
Collapse
|
12
|
Malek NNA, Jawad AH, Ismail K, Razuan R, ALOthman ZA. Fly ash modified magnetic chitosan-polyvinyl alcohol blend for reactive orange 16 dye removal: Adsorption parametric optimization. Int J Biol Macromol 2021; 189:464-476. [PMID: 34450144 DOI: 10.1016/j.ijbiomac.2021.08.160] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 01/13/2023]
Abstract
A magnetic biocomposite blend of chitosan-polyvinyl alcohol/fly ash (m-Cs-PVA/FA) was developed by adding fly ash (FA) microparticles into the polymeric matrix of magnetic chitosan-polyvinyl alcohol (m-Cs-PVA). The effectiveness of m-Cs-PVA/FA as an adsorbent to remove textile dye (reactive orange 16, RO16) from aquatic environment was evaluated. The optimum adsorption key parameters and their significant interactions were determined by Box-Behnken Design (BBD). The analysis of variance (ANOVA) indicates the significant interactions can be observed between m-Cs-PVA/FA dose with solution pH, and m-Cs-PVA/FA dose with working temperature. Considering these significant interactions, the highest removal of RO16 (%) was found 90.3% at m-Cs-PVA/FA dose (0.06 g), solution pH (4), working temperature (30 °C), and contact time (17.5 min). The results of adsorption kinetics revealed that the RO16 adsorption was better described by the pseudo-second-order model. The results of adsorption isotherm indicated a multilayer adsorption process as well described by Freundlich model with maximum adsorption capacity of 123.8 mg/g at 30 °C. An external magnetic field can be easily applied to recover the adsorbent (m-Cs-PVA/FA). The results supported that the synthesized m-Cs-PVA/FA presents itself as an effective and promising adsorbent for textile dye with preferable adsorption capacity and separation ability during and after the adsorption process.
Collapse
Affiliation(s)
- Nurul Najwa Abd Malek
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Ali H Jawad
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia.
| | - Khudzir Ismail
- Faculty of Applied Sciences, Universiti Teknologi MARA, 02600 Arau, Perlis, Malaysia
| | - R Razuan
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Zeid A ALOthman
- Chemistry Department, P.O. Box 2455, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
13
|
Liu T, AgyeKum E, Ma S, Ye H, Li J, Gao M, Ni M, Zhang X, Wang X. Novel nanohybrids for effervescence enhanced magnetic solid-phase microextraction of wide-polarity organic pollutants in roasted meat samples. J Sep Sci 2021; 44:4313-4326. [PMID: 34661968 DOI: 10.1002/jssc.202100482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/22/2021] [Accepted: 10/09/2021] [Indexed: 11/10/2022]
Abstract
To simultaneously and efficiently extract pollutants with differential polarities, we herein fabricated and characterized a multifunctional nanocomposite. The novel nanohybrids used NiFe2 O4 as magnetic cores, and NH2 -MIL-101(Al), β-cyclodextrin and graphene oxide as functional components combined with magnetic cores. With the aid of graphene oxide's large π-conjugated system, NH2 -MIL-101(Al)'s strong adsorption to moderately/strongly polar chemicals, and β-cyclodextrin's specific recognition effect, the nanohybrids realized synergistically efficient extraction of polyaromatic hydrocarbons and bisphenols with a logKow range of 3-6. Combined with acidic and alkaline sources, the nanohybrids-based effervescent tablets were prepared. Based on effervescent reaction-enhanced nanohybrids-based efficient adsorption/extraction and high performance liquid chromatography and fluorescence detection, we successfully developed an excellent microextraction method for the simultaneous determination of both polyaromatic hydrocarbons and bisphenols in roasted meat samples. Several important variables were optimized as follows: Na2 CO3 and tartaric acid as acidic and alkaline sources, 900 μLof the mixed solvent (acetone and hexane at 2:1 by v/v) as the eluent, 5 min of elution time. Under optimized conditions, the novel method gave low limits of detection (0.07-0.30 μg kg-1 ), satisfactory recoveries (86.9-103.9%), and high precision (relative standard deviations of 1.9-6.7%) in roasted lamb, beef, pork, chicken, and sausage samples.
Collapse
Affiliation(s)
- Tingting Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, P.R. China.,Jiangsu Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, P.R. China
| | - Evans AgyeKum
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, P.R. China
| | - Sai Ma
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, P.R. China
| | - Hanzhang Ye
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, P.R. China
| | - Jiani Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, P.R. China
| | - Ming Gao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, P.R. China
| | - Min Ni
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, P.R. China.,Jiangsu Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, P.R. China
| | - Xiaofan Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, P.R. China
| | - Xuedong Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, P.R. China
| |
Collapse
|
14
|
Lee JH, Li S, Yoo JB, Kim YJ. Effects of Various Transition Metals on the Thermal Oxidative Stabilization of Polyacrylonitrile Nanofibers. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-01954-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Marycz K, Smieszek A, Marcinkowska K, Sikora M, Turlej E, Sobierajska P, Patej A, Bienko A, Wiglusz RJ. Nanohydroxyapatite (nHAp) Doped with Iron Oxide Nanoparticles (IO), miR-21 and miR-124 Under Magnetic Field Conditions Modulates Osteoblast Viability, Reduces Inflammation and Inhibits the Growth of Osteoclast - A Novel Concept for Osteoporosis Treatment: Part 1. Int J Nanomedicine 2021; 16:3429-3456. [PMID: 34040372 PMCID: PMC8140937 DOI: 10.2147/ijn.s303412] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022] Open
Abstract
Purpose Osteoporosis results in a severe decrease in the life quality of many people worldwide. The latest data shows that the number of osteoporotic fractures is becoming an increasing international health service problem. Therefore, a new kind of controllable treatment methods for osteoporotic fractures is extensively desired. For that reason, we have manufactured and evaluated nanohydroxyapatite (nHAp)-based composite co-doped with iron oxide (IO) nanoparticles. The biomaterial was used as a matrix for the controlled delivery of miR-21-5p and miR-124-3p, which have a proven impact on bone cell metabolism. Methods The nanocomposite Ca5(PO4)3OH/Fe3O4 (later called nHAp/IO) was obtained by the wet chemistry method and functionalised with microRNAs (nHAp/IO@miR-21/124). Its physicochemical characterization was performed using XRPD, FT-IR, SEM-EDS and HRTEM and SAED methods. The modulatory effect of the composite was tested in vitro using murine pre-osteoblasts MC3T3-E1 and pre-osteoclasts 4B12. Moreover, the anti-inflammatory effects of biomaterial were analysed using a model of LPS-treated murine macrophages RAW 264.7. We have analysed the cells’ viability, mitochondria membrane potential and oxidative stress under magnetic field (MF+) and without (MF-). Moreover, the results were supplemented with RT-qPCR and Western blot assays to evaluate the expression profile for master regulators of bone metabolism. Results The results indicated pro-osteogenic effects of nHAp/IO@miR-21/124 composite enhanced by exposure to MF. The enhanced osteogenesis guided by nHAp/IO@miR-21/124 presence was associated with increased metabolism of progenitor cells and activation of osteogenic markers (Runx-2, Opn, Coll-1). Simultaneously, nanocomposite decreased metabolism and differentiation of pre-osteoclastic 4B12 cells accompanied by reduced expression of CaII and Ctsk. Obtained composite regulated viability of bone progenitor cells and showed immunomodulatory properties inhibiting the expression of inflammatory markers, ie, TNF-α, iNOs or IL-1β, in LPS-stimulated RAW 264.7 cells. Conclusion We have described for the first time a new concept of osteoporosis treatment based on nHAp/IO@miR-21/124 application. Obtained results indicated that fabricated nanocomposite might impact proper regeneration of osteoporotic bone, restoring the balance between osteoblasts and osteoclast.
Collapse
Affiliation(s)
- Krzysztof Marycz
- The Department of Experimental Biology, The Faculty of Biology and Animal Science, University of Environmental and Life Sciences, Wroclaw, Poland.,International Institute of Translational Medicine, Malin, Poland
| | - Agnieszka Smieszek
- The Department of Experimental Biology, The Faculty of Biology and Animal Science, University of Environmental and Life Sciences, Wroclaw, Poland
| | - Klaudia Marcinkowska
- The Department of Experimental Biology, The Faculty of Biology and Animal Science, University of Environmental and Life Sciences, Wroclaw, Poland
| | - Mateusz Sikora
- The Department of Experimental Biology, The Faculty of Biology and Animal Science, University of Environmental and Life Sciences, Wroclaw, Poland
| | - Eliza Turlej
- The Department of Experimental Biology, The Faculty of Biology and Animal Science, University of Environmental and Life Sciences, Wroclaw, Poland
| | | | - Adrian Patej
- Institute of Low Temperature and Structure Research, PAS, Wroclaw, Poland
| | - Alina Bienko
- Faculty of Chemistry, University of Wroclaw, Wroclaw, Poland
| | - Rafal J Wiglusz
- Institute of Low Temperature and Structure Research, PAS, Wroclaw, Poland
| |
Collapse
|
16
|
Synthesis and Characterization of Konjac Gum/Polyethylene Glycol-Silver Nanoparticles and their Potential Application as a Colorimetric Sensor for Hydrogen Peroxide. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-01984-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
ZHANG J, LI P, MA J, JIA Q. [Recent developments of pesticide adsorbents based on cyclodextrins]. Se Pu 2021; 39:173-183. [PMID: 34227350 PMCID: PMC9274844 DOI: 10.3724/sp.j.1123.2020.08018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Indexed: 11/25/2022] Open
Abstract
The invention and application of pesticides have greatly increased the yield of crops, greatly contributing to ensuring people's basic livelihoods and gradually improving their livelihoods to a well-off level. However, foods, water sources, and soil, containing high levels of pesticide residues, result in increasingly serious pollution. Pesticide residues usually have the characteristics of micro toxicity, difficult biodegradation, and bioaccumulation, and thus pose serious threat to living organisms and ecosystems. In recent years, pesticide pollution has earned worldwide focus. Thus, methods for the efficient detection of trace pesticides and reduction of the harm caused by pesticide pollution are urgently required. Researchers have used catalysis, electrochemistry, membrane separation, adsorption, and other methods to enrich pesticides from complex matrices. Among these, adsorbents have attracted much attention owing to their advantages of simple operation steps, rapid treatment process, and low amounts of organic solvents required. Research on adsorption materials has always been a very active field, and is also the key to the success of separation and enrichment of pesticides from complex matrices. Development of adsorbents with the advantages of simple synthesis, environment-friendliness, high stability, and strong reusability is of great significance. There has been some progress in the field of pesticide adsorption using supramolecular compounds. Cyclodextrin is a macrocyclic compound with a cavity after crown ether, which can form inclusion complexes via host guest interactions as the main body. Cyclodextrin can also be modified by etherification, esterification, oxidation, and other chemical reactions to improve its adsorption performance. Pesticides can be classified into organic and inorganic substances. One of the most widely used inorganic fungicides is the Bordeaux solution, whose main component is Cu2+. Organic fungicides, insecticides, herbicides, and plant growth regulators are basically organic molecules, whose hydroxyl and carboxyl groups can form complexes with Cu2+. As a matrix, cyclodextrin not only increases the surface area of the materials, but also provides the binding sites of hydroxyl and carboxyl groups, which guarantees efficient enrichment of Cu2+. Organic pesticides with high polarity, high electron density, and strong hydrophobicity could be better adsorbed. In this paper, the application of cyclodextrin-based adsorbents in pesticide adsorption was reviewed, and on this basis, reference to future development directions and application prospects were provided. The adsorption capacity of individual pesticide adsorbents based on cyclodextrin, as reviewed in this paper, is not high enough. Therefore, improving the adsorption capacity is currently a major research target. Some of the above-mentioned adsorbents have unclear degradation mechanisms and can easily cause secondary pollution. Therefore, the development of environment-friendly pesticide adsorbents that are easy to regenerate is a promising research direction for the future. After adsorption, some detection methods are used to determine whether the pesticide residues are up to the standard; however, the detection instruments are expensive. Therefore, the development of a combined detection mechanism that can reduce workload and cost is a promising research direction. Finally, the development of smart cyclodextrin-based adsorbents is also an efficient and rapid method to reduce the cost of detecting residual pesticide concentrations and the risk of pesticide pollution. For example, intelligent materials, whose color changes can be observed by the naked eye, not only adsorb pesticides, but also respond according to the concentration of residual pesticides.
Collapse
Affiliation(s)
- Jinfeng ZHANG
- 吉林大学化学学院, 吉林 长春 130012
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Ping LI
- 吉林大学化学学院, 吉林 长春 130012
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Jiutong MA
- 吉林大学化学学院, 吉林 长春 130012
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Qiong JIA
- 吉林大学化学学院, 吉林 长春 130012
- College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
18
|
Ethylenediamine functionalized magnetic graphene oxide (Fe3O4@GO-EDA) as an efficient adsorbent in Arsenic(III) decontamination from aqueous solution. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-020-04368-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
19
|
Kalbarczyk M, Szcześ A, Sternik D. The preparation of calcium phosphate adsorbent from natural calcium resource and its application for copper ion removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:1725-1733. [PMID: 32856246 PMCID: PMC7785555 DOI: 10.1007/s11356-020-10585-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
Using the hen eggshells (biowaste) as a source of calcium and an environmentally friendly approach, the nanopowder composed of 74% of hydroxyapatite (HA) and 26% of β-tricalcium phosphate (β-TCP) was obtained. Due to the maximum reduction of the stages associated with the use of chemicals and energy, this method can be considered as economically and environmentally friendly. A well-developed surface area and the negative zeta potential at pH above 3.5 indicate good adsorption properties of this material. The obtained material shows high adsorption capacity towards Cu2+ ions, i.e. 105.4 mg/g at pH 5. Good fit of the Langmuir adsorption model and the pseudo-second-order kinetic model may indicate chemical adsorption probably due to the electrostatic interactions between the Cu2+ cations and the negatively charged phosphate and hydroxyl groups on the material surface.
Collapse
Affiliation(s)
- Marta Kalbarczyk
- Department of Interfacial Phenomena, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, Sq. M. Curie-Skłodowska 3, 20-031, Lublin, Poland
| | - Aleksandra Szcześ
- Department of Interfacial Phenomena, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, Sq. M. Curie-Skłodowska 3, 20-031, Lublin, Poland.
| | - Dariusz Sternik
- Department of Physical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, Sq. M. Curie-Skłodowska 3, 20-031, Lublin, Poland
| |
Collapse
|
20
|
Keykhaee M, Razaghi M, Dalvand A, Salehian F, Soleimani H, Samzadeh-Kermani A, Shamsollahi HR, Foroumadi A, Ramazani A, Khoobi M, Alimohammadi M. Magnetic carnosine-based metal-organic framework nanoparticles: fabrication, characterization and application as arsenic adsorbent. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:1163-1174. [PMID: 33312632 PMCID: PMC7721956 DOI: 10.1007/s40201-020-00535-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 09/07/2020] [Indexed: 05/12/2023]
Abstract
This study centers on the controllable synthesis, characterization, and application of a novel magnetic bio-metal-organic framework (Bio-MOF) for the adsorption and subsequent removal of arsenic from aqueous solutions. Zinc ions and carnosine (Car) were exploited to construct the Car-based MOF on the surface of magnetite (Fe3O4 NPs). The Magnetite precoating with Car led to an increase in the yield and the uniform formation of the magnetic MOF. The prepared magnetic Bio-MOF nanoparticles (Fe3O4-Car-MOF NPs) had semi-spherical shape with the size in the range of 35-77 nm, and the crystalline pattern of both magnetite and Car-based MOF. The NPs were employed as an adsorbent for arsenic (As) removal. The adsorption analyses revealed that all studied independent variables including pH, adsorbent dose, and initial arsenic concentration had a significant effect on the arsenic adsorption, and the adsorption data were well matched to the quadratic model. The predicted adsorption values were close to the experimental values confirming the validity of the suggested model. Furthermore, adsorbent dose and pH had a positive effect on arsenic removal, whereas arsenic concentration had a negative effect. The adsorption isotherm and kinetic studies both revealed that As adsorption fitted best to the Freundlich isotherm model. The maximum monolayer adsorption capacity (94.33 mg/g) was achieved at room temperature, pH of 8.5 and adsorbent dose of 0.4 g/L. Finally, the results demonstrated that the adsorbent could be efficiently applied for arsenic removal from aqueous environment.
Collapse
Affiliation(s)
- Maryam Keykhaee
- Biomaterials Group, Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, 1417614411 Iran
| | - Maryam Razaghi
- Department of Chemistry, University of Zanjan, Zanjan, 4537138791 Iran
| | - Arash Dalvand
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Salehian
- Biomaterials Group, Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, 1417614411 Iran
| | - Hamed Soleimani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Hamid Reza Shamsollahi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Foroumadi
- Biomaterials Group, Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, 1417614411 Iran
| | - Ali Ramazani
- Department of Chemistry, University of Zanjan, Zanjan, 4537138791 Iran
| | - Mehdi Khoobi
- Biomaterials Group, Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, 1417614411 Iran
| | - Mahmood Alimohammadi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Eibagi H, Faghihi K. Preparation of thermally stable magnetic poly(urethane-imide)/nanocomposite containing β-cyclodextrin cavities as new adsorbent for lead and cadmium. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02255-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Sun Y, Guo X, Li D, Yang H. Facile Synthesis of Carboxy-terminated Fe 3O 4@polyamidoamine Nanocomposite for Efficient Removal of Toxic Heavy Metal Contaminants. CHEM LETT 2019. [DOI: 10.1246/cl.190364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yukun Sun
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Xingzhong Guo
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Dongyun Li
- College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, P. R. China
| | - Hui Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
23
|
Núñez D, Serrano JA, Mancisidor A, Elgueta E, Varaprasad K, Oyarzún P, Cáceres R, Ide W, Rivas BL. Heavy metal removal from aqueous systems using hydroxyapatite nanocrystals derived from clam shells. RSC Adv 2019; 9:22883-22890. [PMID: 35514475 PMCID: PMC9067131 DOI: 10.1039/c9ra04198b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 07/18/2019] [Indexed: 01/01/2023] Open
Abstract
Hydroxyapatite (HA) was synthesized by wet chemical precipitation, using clam shell (CS) waste as feedstock. SEM and TEM observation of the produced hydroxyapatite revealed the presence of rod-shaped nanocrystals, while XRD and EDS analyses confirmed the characteristic patterns of hydroxyapatite molecules. This material was subsequently employed as a sorbent for heavy metal removal from aqueous solutions, both in batch and column equilibrium procedures. In batch studies, higher sorption efficiencies were obtained at pH 5, with the highest adsorption capacities of 265, 64, and 55 mg g−1 for Pb(ii), Cd(ii), and Cu(ii), respectively. In addition, an adsorption capacity of 42.5 mg g−1 was determined using a CS-HA packed bed column fed with a solution of Pb(ii). Finally, the breakthrough curve was fitted with Thomas model in order to predict column behavior and scaling up. Removal of Pb(ii), Cu(ii) and Cd(ii) was attained using hydroxyapatite nanocrystals derived from clam shells, in batch and column experiments.![]()
Collapse
Affiliation(s)
- Dariela Núñez
- Centro de Investigación de Polímeros Avanzados, CIPA
- Concepción
- Chile
| | | | - Aritz Mancisidor
- Centro de Investigación de Polímeros Avanzados, CIPA
- Concepción
- Chile
| | | | | | - Patricio Oyarzún
- Facultad de Ingeniería y Tecnología
- Universidad San Sebastián
- Concepción 4080871
- Chile
| | - Rodrigo Cáceres
- Centro de Investigación de Polímeros Avanzados, CIPA
- Concepción
- Chile
| | - Walther Ide
- Centro de Investigación de Polímeros Avanzados, CIPA
- Concepción
- Chile
| | - Bernabé L. Rivas
- Polymer Department
- Faculty of Chemistry
- University of Concepción
- Concepción
- Chile
| |
Collapse
|