1
|
Gao H, Yu H, Yang S, Chai F, Wu H, Tian M. Ultrasensitive detection of H 2O 2 via electrochemical sensor by graphene synergized with MOF-on-MOF nanozymes. Mikrochim Acta 2024; 191:482. [PMID: 39046581 DOI: 10.1007/s00604-024-06541-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/04/2024] [Indexed: 07/25/2024]
Abstract
An electrochemical sensor was developed for the detection of hydrogen peroxide (H2O2), utilizing the synergistic effects of graphene (Gr) and MOF-on-MOF nanozymes (FeCu-NZs). Initially, Fe-MOF with peroxide-like activity is synthesized using a solvothermal method. Subsequently, the organic ligand on its surface binds Cu2+, enhancing the enzyme-like activity further. The resulting FeCu-NZs exhibit a distinctive electrochemical signal in response to H2O2. Moreover, integrating FeCu-NZs with Gr significantly amplifies the electrochemical signal and effectively reduces the sensor's detection limit. The developed sensor exhibited linear ranges of 0.1-3800 μM, with a limit of detection (LOD) of 0.06 μM. Additionally, FeCu-NZs catalyze H2O2 to generate abundant •OH radicals, and colorimetric detection of H2O2 is facilitated using the color rendering principle of 3,3',5,5'-tetramethylbenzidine (TMB). Notably, this detection method was applied to determine H2O2 concentrations in real samples, achieving a recovery exceeding 95.7%. In summary, this research provides a practical platform for the construction of traditional nanozymes and the integration of electrochemical systems, which have broad applications in food analysis, environmental monitoring, and medical diagnosis.
Collapse
Affiliation(s)
- Haifeng Gao
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| | - Haiting Yu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| | - Shuang Yang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| | - Fang Chai
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| | - Hongbo Wu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, P. R. China.
| | - Miaomiao Tian
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, P. R. China.
| |
Collapse
|
2
|
Li SM, Wang JL, Zhou JL, Xiang XY, Yu YT, Chen Q, Mei H, Xu Y. An iron-containing POM-based hybrid compound as a heterogeneous catalyst for one-step hydroxylation of benzene to phenol. Dalton Trans 2024; 53:1058-1065. [PMID: 38099604 DOI: 10.1039/d3dt03560c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
It is a major challenge to perform one-pot hydroxylation of benzene to phenol under mild conditions, which replaces the environmentally harmful cumene method. Thus, finding highly efficient heterogeneous catalysts that can be recycled is extremely significant. Herein, a (POM)-based hybrid compound {[FeII(pyim)2(C2H5O)][FeII(pyim)2(H2O)][PMoV2MoVI9VIV3O42]}·H2O (pyim = 2-(2-pyridyl)benzimidazole) (Fe2-PMo11V3) was successfully prepared by hydrothermal synthesis using typical Keggin POMs, iron ions and pyim ligands. Single-crystal diffraction shows that the Fe-pyim unit in Fe2-PMo11V3 forms a stable double-supported skeleton by Fe-O bonding to the polyacid anion. Remarkably, due to the introduction of vanadium, Fe2-PMo11V3 forms a divanadium-capped conformation. Benzene oxidation experiments indicated that Fe2-PMo11V3 can catalyze the benzene hydroxylation reaction to phenol in a mixed solution of acetonitrile and acetic acid containing H2O2 at 60 °C, affording a phenol yield of about 16.2% and a selectivity of about 94%.
Collapse
Affiliation(s)
- Si-Man Li
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Ji-Lei Wang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Jiu-Lin Zhou
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Xin-Ying Xiang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Ya-Ting Yu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Qun Chen
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Hua Mei
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Yan Xu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, P.R. China
| |
Collapse
|
3
|
Li Y, Li S, Kong Y. Hydroxylation of benzene to phenol over heteropoly acid H 5PMo 10V 2O 40 supported on amine-functionalized MCM-41. RSC Adv 2021; 11:26571-26580. [PMID: 35480001 PMCID: PMC9037690 DOI: 10.1039/d1ra04269f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/28/2021] [Indexed: 11/21/2022] Open
Abstract
Supported catalysts with Keggin type heteropoly acids (H5PMo10V2O40) loaded onto amine-functionalized MCM-41 for the catalytic hydroxylation of benzene to phenol with H2O2 were prepared by a wet impregnation method. The effects of the preparation conditions on the properties and activity of the supported catalysts were fully investigated. The results showed that the catalyst retained the mesoporous structure of MCM-41 and H5PMo10V2O40 was dispersed uniformly on the surface of the amine-functionalized MCM-41. Meanwhile, the reusability and catalytic performance of the catalyst were affected by two key factors, i.e., the interaction between the heteropoly acid and the surface of MCM-41, and the hydrophobicity of the catalyst since they decide the leaching of H5PMo10V2O40 and the adsorption of benzene. The catalyst with H5PMo10V2O40 loaded onto amine-functionalized MCM-41, which was prepared using ethanol as the solvent, exhibited the highest phenol yield (20.4%), a turnover frequency value of 20.3 h-1 and good reusability. We believe this work offers an effective and facile strategy for the preparation of a new catalyst for hydroxylation of benzene to phenol.
Collapse
Affiliation(s)
- Yanjun Li
- Faculty of Materials and Chemical Engineering, Yibin University Yibin Sichuan 644000 China
| | - Shichao Li
- Faculty of Materials and Chemical Engineering, Yibin University Yibin Sichuan 644000 China
| | - Yan Kong
- Department of Safety and Operation Management, Yibin Tianyuan Group Company Limited Yibin 644000 China
| |
Collapse
|
4
|
Yin Y, Yang H, Xin Z, Zhang C, Xu G, Wang Y, Dong G, Zhang X. β-mCoPc/Cu-BDC composites for oxidation of benzyl alcohol to benzaldehyde. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1784406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Yanbing Yin
- Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, China
| | - Hang Yang
- Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, China
| | - Zhaosong Xin
- Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, China
| | - Chengli Zhang
- Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, China
| | - Guopeng Xu
- Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, China
| | - Yumeng Wang
- Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, China
| | - Guohua Dong
- Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, China
| | - Xun Zhang
- Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, China
| |
Collapse
|
5
|
Zhao Q, Zhang L, Zhao M, Xu P, Wang X, Jia X, Zhang J. Vanadium Oxyacetylacetonate Grated on Metal Organic Framework as Catalyst for the Direct Hydroxylation of Benzene to Phenol. ChemistrySelect 2020. [DOI: 10.1002/slct.202000842] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Qianqian Zhao
- School of Materials and Chemical EngineeringZhongyuan University of Technology Zhengzhou 450007 P.R. China
| | - Liuxue Zhang
- School of Materials and Chemical EngineeringZhongyuan University of Technology Zhengzhou 450007 P.R. China
| | - Meiyan Zhao
- School of Materials and Chemical EngineeringZhongyuan University of Technology Zhengzhou 450007 P.R. China
| | - Panpan Xu
- School of Materials and Chemical EngineeringZhongyuan University of Technology Zhengzhou 450007 P.R. China
| | - Xiulian Wang
- School of Energy and EnvironmentZhongyuan University of Technology Zhengzhou 450007 P.R. China
| | - Xu Jia
- School of Materials and Chemical EngineeringZhongyuan University of Technology Zhengzhou 450007 P.R. China
| | - Jie Zhang
- School of Materials and Chemical EngineeringZhongyuan University of Technology Zhengzhou 450007 P.R. China
| |
Collapse
|
6
|
Taheri M, Ghiaci M, Moheb A, Shchukarev A. Organic–inorganic hybrid of anchored dicationic ionic liquid on Al‐MCM‐41‐phosphovanadomolybdate toward selective oxidation of benzene to phenol. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Masoud Taheri
- Department of ChemistryIsfahan University of Technology Isfahan 8415683111 Iran
- College of Pardis, Chemistry SectionIsfahan University of Technology Isfahan 8415683111 Iran
| | - Mehran Ghiaci
- Department of ChemistryIsfahan University of Technology Isfahan 8415683111 Iran
| | - Ahmad Moheb
- Department of Chemical EngineeringIsfahan University of Technology Isfahan 8415683111 Iran
| | | |
Collapse
|