1
|
Othman AM, Poulos AS, Torres O, Routh AF. Liquid-Liquid Phase Separation Induced by Vapor Transfer in Evaporative Binary Sessile Droplets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13242-13257. [PMID: 37677134 PMCID: PMC10515642 DOI: 10.1021/acs.langmuir.3c01686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/21/2023] [Indexed: 09/09/2023]
Abstract
Drying of binary sessile droplets consisting of ethanol and octamethyltrisiloxane on a high-energy surface is investigated. During the process of evaporation, the droplets undergo liquid-liquid phase separation, resulting in the appearance of microdroplets at the liquid-air interface, which subsequently violently burst. This phase separation is attributed to water vapor transfer into the droplet, which modifies the solubility and leads to the formation of a ternary mixture. The newly formed ternary mixture may undergo nucleation and growth or spinodal decomposition, depending on the droplet composition path. By control of the relative humidity of air, phase separation can be mitigated or even eliminated. The droplets also display high mobility and complex wetting behavior due to phase separation, with two contracting and two spreading stages. The mass loss experiments reveal that the droplets undergo three distinct drying stages with an enhanced evaporation rate observed during the phase separation stage. A modified diffusion-limited model was employed to predict the evaporation rate, accounting for the physiochemical changes during evaporation and proved to be consistent with experimental observations. The findings of this work enhance our understanding of a coupled fundamental process involving the evaporation of multicomponent mixtures, wetting, and phase separation.
Collapse
Affiliation(s)
- Ahmed M. Othman
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Dr, Cambridge CB3 0AS, U.K.
| | | | - Ophelie Torres
- Unilever
R & D Port Sunlight, Quarry Road East, Wirral CH63 3JW, U.K.
| | - Alexander. F. Routh
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Dr, Cambridge CB3 0AS, U.K.
| |
Collapse
|
2
|
Chen T, Peng Y, Qiu M, Yi C, Xu Z. Recent advances in mixing-induced nanoprecipitation: from creating complex nanostructures to emerging applications beyond biomedicine. NANOSCALE 2023; 15:3594-3609. [PMID: 36727557 DOI: 10.1039/d3nr00280b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Mixing-induced nanoprecipitation (MINP) is an efficient, controllable, scalable, versatile, and cost-effective technique for the preparation of nanoparticles. In addition to the formulation of drugs, MINP has attracted tremendous interest in other fields. In this review, we highlight recent advances in the preparation of nanoparticles with complex nanostructures via MINP and their emerging applications beyond biomedicine. First, the mechanisms of nanoprecipitation and four mixing approaches for MINP are briefly discussed. Next, three strategies for the preparation of nanoparticles with complex nanostructures including sequential nanoprecipitation, controlling phase separation, and incorporating inorganic nanoparticles, are summarized. Then, emerging applications including the engineering of catalytic nanomaterials, environmentally friendly photovoltaic inks, colloidal surfactants for the preparation of Pickering emulsions, and green templates for the synthesis of nanomaterials, are reviewed. Furthermore, we discuss the structure-function relationships to gain more insight into design principles for the development of functional nanoparticles via MINP. Finally, the remaining issues and future applications are discussed. This review will stimulate the development of nanoparticles with complex nanostructures and their broader applications beyond biomedicine.
Collapse
Affiliation(s)
- Tianyou Chen
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Yan Peng
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Meishuang Qiu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Changfeng Yi
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Zushun Xu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
3
|
Gong Y, Bai Y, Zhao D, Wang Q. Aggregation of carboxyl-modified polystyrene nanoplastics in water with aluminum chloride: Structural characterization and theoretical calculation. WATER RESEARCH 2022; 208:117884. [PMID: 34837810 DOI: 10.1016/j.watres.2021.117884] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/05/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Nanoplastics (NPs) pollution of aquatic systems is becoming an emerging environmental issue due to their stable structure, high mobility, and easy interactions with ambient contaminants. Effective removal technologies are urgently needed to mitigate their toxic effects. In this study, we systematically investigated the removal effectiveness and mechanisms of a commonly detected nanoplastics, carboxyl-modified polystyrene (PS-COOH) via coagulation and sedimentation processes using aluminum chloride (AlCl3) as a coagulant. PS-COOH appeared as clearly defined and discrete spherical nanoparticles in water with a hydrodynamic diameter of 50 nm. The addition of 10 mg/L AlCl3 compressed and even destroyed the negatively charged PS-COOH surface layer, decreased the energy barrier, and efficiently removed 96.6% of 50 mg/L PS-COOH. The dominant removal mechanisms included electrostatic adsorption and intermolecular interactions. Increasing the pH from 3.5 to 8.5 sharply enhanced the PS-COOH removal, whereas significant loss was observed at pH 10.0. High temperature (23 °C) favored the removal of PS-COOH compared to lower temperature (4 °C). High PS-COOH removal efficiency was observed over the salinity range of 0 - 35‰. The presence of positively charged Al2O3 did not affect the PS-COOH removal, while negatively charged SiO2 reduced the PS-COOH removal from 96.6% to 93.2%. Moreover, the coagulation and sedimentation process efficiently removed 90.2% of 50 mg/L PS-COOH in real surface water even though it was rich in inorganic ions and total organic carbon. The fast and efficient capture of PS-COOH by AlCl3 via a simple coagulation and sedimentation process provides a new insight for the treatment of NPs from aqueous environment.
Collapse
Affiliation(s)
- Yanyan Gong
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China.
| | - Yang Bai
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Dongye Zhao
- Department of Civil and Environmental Engineering, Environmental Engineering Program, Auburn University, Auburn, AL 36849, United States
| | - Qilin Wang
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
4
|
Tu T, Zhou W, Wang M, Guo X, Li L, Cohen Stuart MA, Wang J. One-Pot Synthesis of Small and Uniform Gold Nanoparticles in Water by Flash Nanoprecipitation. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Tianyi Tu
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Wenjuan Zhou
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Mingwei Wang
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Xuhong Guo
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Li Li
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Martien A. Cohen Stuart
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Junyou Wang
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| |
Collapse
|
5
|
Shifrina ZB, Matveeva VG, Bronstein LM. Role of Polymer Structures in Catalysis by Transition Metal and Metal Oxide Nanoparticle Composites. Chem Rev 2019; 120:1350-1396. [DOI: 10.1021/acs.chemrev.9b00137] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Zinaida B. Shifrina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St, Moscow, 119991 Russia
| | - Valentina G. Matveeva
- Tver State Technical University, Department of Biotechnology and Chemistry, 22 A. Nikitina St, 170026 Tver, Russia
| | - Lyudmila M. Bronstein
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St, Moscow, 119991 Russia
- Indiana University, Department of Chemistry, Bloomington, 800 East Kirkwood Avenue, Indiana 47405, United States
- King Abdulaziz University, Faculty of Science, Department of Physics, P.O. Box 80303, Jeddah 21589, Saudi Arabia
| |
Collapse
|