HajimohamadzadehTorkambour S, Nejad MJ, Pazoki F, Karimi F, Heydari A. Synthesis and characterization of a green and recyclable arginine-based palladium/CoFe
2O
4 nanomagnetic catalyst for efficient cyanation of aryl halides.
RSC Adv 2024;
14:14139-14151. [PMID:
38737408 PMCID:
PMC11085038 DOI:
10.1039/d4ra01200c]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/12/2024] [Indexed: 05/14/2024] Open
Abstract
The utilization of magnetic nanoparticles in the fields of science and technology has gained considerable popularity. Among their various applications, magnetic nanoparticles have been predominantly employed in catalytic processes due to their easy accessibility, recoverability, effective surface properties, thermal stability, and low cost. In this particular study, cyanuric chloride and arginine were utilized to synthesize an arginine-based oligomeric compound (ACT), which was supported on cobalt ferrite, resulting in a green catalyst with high activity and convenient recyclability for the cyanation reaction of aryl halides. The Pd/CoFe2O4@ACT nanomagnetic catalyst demonstrated excellent performance in the cyanation of various aryl iodides and bromides, yielding favorable reaction outcomes at a temperature of 90 °C within a duration of 3 hours. The synthesized nanoparticles were successfully characterized using various techniques, including FTIR, FE-SEM, EDX/MAP, XRD, TEM, TGA, BET, and ICP-OES. Moreover, the Pd/CoFe2O4@ACT catalyst exhibited remarkable catalytic activity, maintaining an 88% performance even after five consecutive runs. Analysis of the reused catalyst through SEM and TEM imaging confirmed that there were no significant changes in the morphology or dispersion of the particles. Ultimately, it was demonstrated that the Pd/CoFe2O4@ACT nanomagnetic catalyst outperformed numerous catalysts previously reported in the literature for the cyanation of aryl halides.
Collapse