1
|
Behera S. A Review on Polyaniline-Supported Catalyst for Organic Transformations. ACS OMEGA 2024; 9:50097-50117. [PMID: 39741858 PMCID: PMC11683646 DOI: 10.1021/acsomega.4c04352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 01/03/2025]
Abstract
Organic transformations are very important in synthetic organic chemistry and are used immensely in pharmaceuticals. Polyaniline is a marvelous and exceptional conducting polymer because of its extensive and valuable applications. Various modified polyaniline derivatives were developed by researchers and explored as solid heterogeneous catalysts for synthesizing important organic compounds through different organic transformations. Polyaniline-supported catalysts have many advantages: easy synthesis, environmental stability, environmental friendliness, high yield, short reaction times, the requirement for green solvent or solventless medium, and excellent reusability. In past years, polyaniline-supported catalysts have been widely used in various important organic syntheses under solvent-free or green reaction conditions. Hence, here is a comprehensive, detailed review of the application of polyaniline catalysts in organic transformations with all of their advantages and future scope.
Collapse
|
2
|
Santos CMM, Silva AMS. Transition Metal-Catalyzed Transformations of Chalcones. CHEM REC 2024; 24:e202400060. [PMID: 39008887 DOI: 10.1002/tcr.202400060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/09/2024] [Indexed: 07/17/2024]
Abstract
Chalcones are a class of naturally occurring flavonoid compounds associated to a variety of biological and pharmacological properties. Several reviews have been published describing the synthesis and biological properties of a vast array of analogues. However, overviews on the reactivity of chalcones has only been explored in a few accounts. To fill this gap, a systematic survey on the most recent developments in the transition metal-catalyzed transformation of chalcones was performed. The chemistry of copper, palladium, zinc, iron, manganese, nickel, ruthenium, cobalt, rhodium, iridium, silver, indium, gold, titanium, platinum, among others, as versatile catalysts will be highlighted, covering the literature from year 2000 to 2023, in more than 380 publications.
Collapse
Affiliation(s)
- Clementina M M Santos
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Bragança, Apolónia, 5300-253, Bragança, Portugal
| | - Artur M S Silva
- LAQV, REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Campus de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
3
|
Jana A, Chakraborty S, Sarkar K, Maji B. Ruthenium-Catalyzed Reductive Coupling of Epoxides with Primary Alcohols via Hydrogen Transfer Catalysis. J Org Chem 2023; 88:310-318. [PMID: 36546672 DOI: 10.1021/acs.joc.2c02354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Herein, we report the ruthenium-catalyzed synthesis of β-alkylated secondary alcohols via the regioselective ring-opening of epoxides with feedstock primary alcohols. The reaction utilized alcohol as the carbon source and the terminal reductant. Kinetic and labeling experiments elucidate the hydrogen transfer catalysis that operates via tandem Markovnikov selective transfer hydrogenation of terminal epoxides and hydrogen transfer-mediated cross-coupling of the resulting alcohol with primary alcohol substrates. A broad scope (40 examples including drugs/natural product derivatives) and excellent regioselectivity for a variety of substrates were shown.
Collapse
Affiliation(s)
- Akash Jana
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Sayandip Chakraborty
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Koushik Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Biplab Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| |
Collapse
|
4
|
Zhang D, Wu F, Wan Z, Wang Y, He X, Guo B, You H, Chen FE. A palladium polyaniline complex: a simple and efficient catalyst for batch and flow Suzuki-Miyaura cross-couplings. Chem Commun (Camb) 2022; 58:10845-10848. [PMID: 36073300 DOI: 10.1039/d2cc04051d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A novel palladium polyaniline complex (Pd@PANI) was synthesized via a one-pot method using a low concentration of hydrogen peroxide (3 wt%) as a mild oxidant. Pd@PANI was employed to catalyze Suzuki-Miyaura cross-couplings with 0.11 ppm levels of palladium and high turnover numbers (up to 6.1 × 104). Various aromatic halides and aromatic boric acids were used as reaction partners to prepare the biaryl compounds in high yields. Application of the method in the synthesis of D-fructose derivatives was also performed. Furthermore, the catalyst was evaluated under a flow process to provide the corresponding products in good yields with shorter residence times and lower temperatures in more convenient operations compared with the batch conditions.
Collapse
Affiliation(s)
- Dongliang Zhang
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China. .,Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Fusong Wu
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China. .,Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Zhijian Wan
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Yichun Wang
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Xuan He
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Bing Guo
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Hengzhi You
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China. .,Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Fen-Er Chen
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China. .,Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.,Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, China
| |
Collapse
|
5
|
Garg N, Somasundharam HP, Dahiya P, Sundararaju B. Methanol as a hydrogen source: room-temperature highly-selective transfer hydrogenation of α,β-unsaturated ketones. Chem Commun (Camb) 2022; 58:9930-9933. [PMID: 35979880 DOI: 10.1039/d2cc03597a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The described system offers an ideal, user-friendly protocol for the chemoselective homogeneous hydrogenation of α,β-unsaturated ketones at room temperature using methanol as a liquid organic hydrogen carrier. Excellent yields were achieved with an in situ-prepared phosphine-free Cp*Ir(III)/bipyridonate complex. Chemoselective reduction with other reducible functionalities and late-stage functionalization were also explored.
Collapse
Affiliation(s)
- Nidhi Garg
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208 016, India.
| | | | - Pardeep Dahiya
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208 016, India.
| | - Basker Sundararaju
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208 016, India.
| |
Collapse
|
6
|
Li T, Xu B. Faster and Greener Parallel Chemical Reaction Work-up Using ‘Sponge’ Extraction. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Yang S, Kim BM. Reduction of imines with a reusable bimetallic PdCo-Fe 3O 4 catalyst at room temperature under atmospheric pressure of H 2. RSC Adv 2022; 12:2436-2442. [PMID: 35425266 PMCID: PMC8979128 DOI: 10.1039/d1ra08552b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/27/2021] [Indexed: 02/01/2023] Open
Abstract
Bimetallic nanocatalysts have been used for the development of organic reactions, owing to the synergistic effect between the transition metals. A new procedure for synthesizing amines by the reduction of imines with H2 at atmospheric pressure and room temperature in the presence of PdCo–Fe3O4 nanoparticles is reported. The straightforward procedure, mild reaction conditions, high turnover number, and recyclability extend the scope of this reaction to practical applications. A catalytic procedure that has mild reaction conditions, high turnover number, and the recyclability of the catalyst is presented, whereby the synthesis of amines through the reduction of imines employing PdCo–Fe3O4 under atmospheric pressure of H2 is achieved.![]()
Collapse
Affiliation(s)
- Sabyuk Yang
- Department of Chemistry, College of Natural Sciences, Seoul National University Seoul 08826 South Korea
| | - Byeong Moon Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University Seoul 08826 South Korea
| |
Collapse
|
8
|
Sevim M, Bayrak C, Menzek A. Chemoselective reduction of α,β-unsaturated carbonyl compounds in the presence of CuPd alloy nanoparticles decorated on mesoporous graphitic carbon nitride as highly efficient catalyst. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2021.122181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Sun H, Shi Y, Fu W, Yu L. Polyaniline‐Supported Tungsten‐Catalyzed Green and Selective Oxidation of Alcohols. ChemistrySelect 2021. [DOI: 10.1002/slct.202101934] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Hong Sun
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225002 China
| | - Yaocheng Shi
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225002 China
| | - Weijun Fu
- College of Chemistry and Chemical Engineering and Henan Key Laboratory of Fuction-Oriented Porous Materials Luoyang Normal University Luoyang Henan 471934 P. R. China
| | - Lei Yu
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225002 China
| |
Collapse
|
10
|
Yılmaz F, Hür D. Continuous flow hydrogenation with Pd complexes of pyridine‐benzotriazole ligands. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Filiz Yılmaz
- Faculty of Science Department of Chemistry, Yunusemre Campus Eskisehir Technical University Eskisehir Turkey
| | - Deniz Hür
- Faculty of Science Department of Chemistry, Yunusemre Campus Eskisehir Technical University Eskisehir Turkey
| |
Collapse
|
11
|
Fang JW, Liao FJ, Qian Y, Dong CC, Xu LJ, Gong HY. One-Pot Synthesis of 3-Substituted 4 H-Quinolizin-4-ones via Alkyne Substrate Control Strategy. J Org Chem 2021; 86:3648-3655. [PMID: 33372518 DOI: 10.1021/acs.joc.0c02484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Three-substituted 4H-quinolizin-4-ones were obtained via a facile method with good selectivity and high efficiency. On the basis of alkyne substrate control, the mild and cost-efficient reaction has a broad substrate scope (20 examples, up to 93% yield) and is also easy to scale up. Active sites on the products allow for further modifications. The alkyne substrate control strategy could be further extended to achieve more complex three-substituted 4H-quinolizin-4-one skeletons.
Collapse
Affiliation(s)
- Ji-Wang Fang
- Department of Chemistry, Renmin University of China, Zhonggancun Street 59, Beijing 100872, P. R. China.,College of Chemistry, Beijing Normal University, Xinjiekouwaidajie 19, Beijing 100875, P. R. China
| | - Fang-Jie Liao
- College of Chemistry, Beijing Normal University, Xinjiekouwaidajie 19, Beijing 100875, P. R. China
| | - Yang Qian
- Department of Chemistry, Renmin University of China, Zhonggancun Street 59, Beijing 100872, P. R. China
| | - Chao-Chen Dong
- Department of Chemistry, Renmin University of China, Zhonggancun Street 59, Beijing 100872, P. R. China.,College of Chemistry, Beijing Normal University, Xinjiekouwaidajie 19, Beijing 100875, P. R. China
| | | | | |
Collapse
|
12
|
Taeufer T, Pospech J. Palladium-Catalyzed Synthesis of N,N-Dimethylanilines via Buchwald–Hartwig Amination of (Hetero)aryl Triflates. J Org Chem 2020; 85:7097-7111. [DOI: 10.1021/acs.joc.0c00491] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Tobias Taeufer
- Leibniz Institute for Catalysis at Rostock University, Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Jola Pospech
- Leibniz Institute for Catalysis at Rostock University, Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| |
Collapse
|
13
|
Bayrak C, Menzek A, Sevim M. Monodisperse NiPd alloy nanoparticles decorated on mesoporous graphitic carbon nitride as a catalyst for the highly efficient chemoselective reduction of α,β-unsaturated ketone compounds. NEW J CHEM 2020. [DOI: 10.1039/d0nj03104f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The study reported chemoselective reduction with selectivity (>99%) by the catalytic transfer hydrogenation of α,β-unsaturated ketones with a catalyst of NiPd alloy nanoparticles decorated on mesoporous graphitic carbon nitride (NiPd/mpg-C3N4).
Collapse
Affiliation(s)
- Cetin Bayrak
- Department of Chemistry
- Faculty of Science
- Ataturk University
- Erzurum 25240
- Turkey
| | - Abdullah Menzek
- Department of Chemistry
- Faculty of Science
- Ataturk University
- Erzurum 25240
- Turkey
| | - Melike Sevim
- Department of Chemistry
- Faculty of Science
- Ataturk University
- Erzurum 25240
- Turkey
| |
Collapse
|
14
|
Patel HA, Bhanvadia VJ, Mande HM, Zade SS, Patel AL. Benzochalcogendiazole-based conjugated molecules: investigating the effects of substituents and heteroatom juggling. Org Biomol Chem 2019; 17:9467-9478. [PMID: 31651018 DOI: 10.1039/c9ob01762c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A convenient and effective synthetic approach for benzochalcogendiazole-based small molecules has been achieved using polyaniline (PANI)-anchored palladium as a heterogeneous catalyst. The photophysical properties of the synthesized benzochalcogendiazole-based small molecules, having different terminal substituents, have been compared. Moreover, the structural aspects, including the packing patterns and non-bonding interactions of the conjugated molecules, have been investigated using the single crystal X-ray diffraction (SCXRD) technique.
Collapse
Affiliation(s)
- Heta A Patel
- Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara-390002, India.
| | | | | | | | | |
Collapse
|