1
|
Beigiazaraghbelagh P, Rostamizadeh S, Poursattar Marjani A, Bahrami A, Ghiasvand A, Arabi Z. Experimental and DFT studies on the green synthesis of 2-amino-4H-chromenes using a recyclable GOQDs-NS-doped catalyst. Sci Rep 2024; 14:31737. [PMID: 39738359 DOI: 10.1038/s41598-024-82347-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 12/04/2024] [Indexed: 01/02/2025] Open
Abstract
This research presents an innovative approach for synthesizing 2-amino-4H-chromene derivatives, utilizing 30 mg of NS-doped graphene oxide quantum dots (GOQDs) as a catalyst in a one-pot, three-component reaction conducted in ethanol. The NS-doped GOQDs were synthesized using a cost-effective bottom-up method through the condensation of citric acid (CA) with thiourea and the reaction was carried out at 185∘ C, resulting in the elimination of water. The catalytic performance of the synthesized NS-doped GOQDs resulted in high product yields, achieving up to 98% for the 2-amino-4H-chromene derivatives from aromatic aldehydes, malononitrile, resorcinol, β -naphthol, and dimedone. The reaction showcased rapid completion time (typically < 2 h), low-cost reagents, and easy work-up procedures. In addition, the study integrates experimental and theoretical analyses, including density functional theory (DFT) calculations, to investigate the electronic properties of the synthesized compounds. Calculated HOMO and LUMO energies indicate efficient charge transfer within the molecular structure. The FT-IR spectra of compound 4c were recorded in the range of 4000-500 cm- 1 , and vibrational frequencies were computed at the B3LYP/6-311+G(d,p) level, correlating well with experimental data. Detailed analyses, including Mep surfaces, Mulliken population analysis, and Natural Bond Orbital (NBO) analysis, provide further insights into the electronic distribution and reactivity of the compounds. Furthermore, comparative1 H and13 C NMR analyses of compound 4c reveal strong agreement between computational and experimental findings. This research not only validates the synthetic method but also emphasizes the dual experimental and computational approach in understanding the structural and electronic characteristics of the 4c compound.
Collapse
Affiliation(s)
- Parvin Beigiazaraghbelagh
- Department of Chemistry, Faculty of Science, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran.
| | - Shahnaz Rostamizadeh
- Department of Chemistry, Faculty of Science, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran
| | | | - Aidin Bahrami
- Department of Physical Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| | - Arezu Ghiasvand
- Department of Chemistry, Faculty of Science, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran
| | - Zahra Arabi
- Department of Chemistry, Faculty of Science, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran
| |
Collapse
|
2
|
Shenbagavalli K, Suganya K, Sundaram E, Murugan M, Sivasamy Vasantha V. First organic fluorescence immunoassay for the detection of Enterobacter cloacae in food matrixes. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3927-3937. [PMID: 38832637 DOI: 10.1039/d4ay00289j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
For the first time, a novel fluorescent moiety, 2-amino-4-(7-formyl-1,8-dihydropyren-2-yl)-7-hydroxy-4H-chromene-3-carbonitrile (ACC), was synthesized by an ultrasonication method. The synthesis of this moiety was confirmed via structural elucidation using FTIR and NMR spectroscopy techniques. Further, photophysical properties of the fluorescent moiety were tested using UV-visible and emission spectroscopy techniques. In this case, the moiety was tagged with an antibody of Enterobacter cloacae via 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide and N-hydroxysuccinimide (EDC/NHS) coupling and applied as a sensing element for the detection of Enterobacter cloacae (E. cloacae) by UV-visible and emission spectroscopy techniques. The developed fluorescent sensor detected E. cloacae via a FRET mechanism. Under optimized conditions, ACC-anti-E. cloacae detected E. cloacae in the linear range from 101 to 1010 CFU mL-1 with a limit of detection (LOD) of 10.55 CFU mL-1. The developed sensor was applied for the detection of E. cloacae in food samples such as orange, pomegranate, milk, rice, tomato, potato and onion.
Collapse
Affiliation(s)
- Kathiravan Shenbagavalli
- Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai- 625021, TamilNadu, India.
| | - Kannan Suganya
- Central Research Laboratory, Vinayaka Mission's,Medical College and Hospital, Vinayaka Mission's Research Foundation, Karaikal- 609609, India
| | - Ellairaja Sundaram
- Depatment of Chemistry, Vivekanada College, Tiruvedakam, West, Madurai- 625234, Tamilnadu, India
| | - Marudhamuthu Murugan
- Department of Microbial Technology, School of Biological Science, Madurai Kamaraj University, Madurai-625021, Tamil Nadu, India
| | - Vairathevar Sivasamy Vasantha
- Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai- 625021, TamilNadu, India.
| |
Collapse
|
3
|
Apparao B, Robert AR, Kumar MMK, Madaka RK, Muralidhar P, Maddila S, Jonnalagadda SB. Design of novel 2-amino-pyrans via a green and facile one-pot multicomponent protocol using RuO2/Al2O3 as reusable catalyst. RESEARCH ON CHEMICAL INTERMEDIATES 2023. [DOI: 10.1007/s11164-022-04949-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
4
|
Asiri M, Abdulsalam AG, Kahtan M, Alsaikhan F, Farhan I, Mutlak DA, Hadrawi SK, Suliman M, Di Lorenzo R, Laneri S. Synthesis of New Zirconium Magnetic Nanocomposite as a Bioactive Agent and Green Catalyst in the Four-Component Synthesis of a Novel Multi-Ring Compound Containing Pyrazole Derivatives. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4468. [PMID: 36558322 PMCID: PMC9784536 DOI: 10.3390/nano12244468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/07/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
New nanocomposites containing zirconium were synthesized using microwave irradiation. Their structure was confirmed by vibrating sample magnetometer (VSM) curves, X-ray diffraction (XRD) patterns, scanning electron microscope (SEM) and transmission electron microscopy (TEM) images, Fourier transform infrared spectroscopy (FT-IR), and Brunauer-Emmett-Teller (BET) N2 adsorption/desorption isotherms. After the structure confirmation of the zirconium magnetic nanocomposite, the catalytic properties in the synthesis of pyrazole derivatives were investigated. Next, the biological activities of the zirconium magnetic nanocomposite, such as the antibacterial and antifungal activities, were investigated. The research results showed that the zirconium magnetic nanocomposite has high catalytic properties and can be used as a magnetic nanocatalyst for synthesizing heterocyclic compounds such as pyrazole derivatives in addition to having high biological properties. The unique properties of the nanoparticles can be attributed to their synthesis method and microwave radiation.
Collapse
Affiliation(s)
- Mohammed Asiri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | | | - Mustafa Kahtan
- Medical Technical College, Al-Farahidi University, Baghdad 10011, Iraq
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Issa Farhan
- Medical Physics Department, Al-Mustaqbal University College, Babylon 51001, Iraq
| | | | - Salema K. Hadrawi
- Refrigeration and Air-Conditioning Technical Engineering Department, College of Technical Engineering, The Islamic University, Najaf 54001, Iraq
| | - Muath Suliman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Ritamaria Di Lorenzo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano, 49-80131 Naples, Italy
| | - Sonia Laneri
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano, 49-80131 Naples, Italy
| |
Collapse
|
5
|
Rational design, molecular docking, dynamic simulation, synthesis, PPAR-γ competitive binding and transcription analysis of novel glitazones. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Maddila S, Kerru N, Jonnalagadda SB. Recent Progress in the Multicomponent Synthesis of Pyran Derivatives by Sustainable Catalysts under Green Conditions. Molecules 2022; 27:6347. [PMID: 36234888 PMCID: PMC9571218 DOI: 10.3390/molecules27196347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 12/03/2022] Open
Abstract
Pyrans are one of the most significant skeletons of oxygen-containing heterocyclic molecules, which exhibit a broad spectrum of medicinal applications and are constituents of diverse natural product analogues. Various biological applications of these pyran analogues contributed to the growth advances in these oxygen-containing molecules. Green one-pot methodologies for synthesising these heterocyclic molecules have received significant attention. This review focuses on the recent developments in synthesising pyran ring derivatives using reusable catalysts and emphasises the multicomponent reaction strategies using green protocols. The advantages of the catalysts in terms of yields, reaction conditions, and recyclability are discussed.
Collapse
Affiliation(s)
- Suresh Maddila
- Department of Chemistry, GITAM School of Sciences, GITAM University, Visakhapatnam 530045, Andhra Pradesh, India
- School of Chemistry & Physics, University of KwaZulu-Natal, Westville Campus, Chiltern Hills, Durban 4000, South Africa
| | - Nagaraju Kerru
- School of Chemistry & Physics, University of KwaZulu-Natal, Westville Campus, Chiltern Hills, Durban 4000, South Africa
- Department of Chemistry, GITAM School of Science, GITAM University, Bengaluru Campus, Bengaluru 561203, Karnataka, India
| | - Sreekantha Babu Jonnalagadda
- School of Chemistry & Physics, University of KwaZulu-Natal, Westville Campus, Chiltern Hills, Durban 4000, South Africa
| |
Collapse
|
7
|
Mandal S, Kumar BR P, Alam MT, Tripathi PP, Channappa B. Novel Imidazole Phenoxyacetic Acids as Inhibitors of USP30 for Neuroprotection Implication via the Ubiquitin-Rho-110 Fluorometric Assay: Design, Synthesis, and In Silico and Biochemical Assays. ACS Chem Neurosci 2022; 13:1433-1445. [PMID: 35417128 DOI: 10.1021/acschemneuro.2c00076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
USP30, a deubiquitinating enzyme family, forfeits the ubiquitination of E3 ligase and Parkin on the surface of mitochondria. Inhibition of USP30 results in mitophagy and cellular clearance. Herein, by understanding structural requirements, we discovered potential USP30 inhibitors from an imidazole series of ligands via a validated ubiquitin-rhodamine-110 fluorometric assay. A novel catalytic use of the Zn(l-proline)2 complex for the synthesis of tetrasubstituted imidazoles was identified. Among all compounds investigated, 3g and 3f inhibited USP30 at IC50 of 5.12 and 8.43 μM, respectively. The binding mode of compounds at the USP30 binding site was understood by a docking study and interactions with the key amino acids were identified. Compound 3g proved its neuroprotective efficacy by inhibiting apoptosis on SH-SY5Y neuroblastoma cells against dynorphin A (10 μM) treatment. Hence, the present study provides a new protocol to design and develop ligands against USP30, thereby offering a therapeutic strategy under conditions like kidney damage and neurodegenerative disorders including Parkinson's disease.
Collapse
Affiliation(s)
- Subhankar Mandal
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, Karnataka 570 015, India
| | - Prashantha Kumar BR
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, Karnataka 570 015, India
| | - Md Tanjim Alam
- Council of Scientific and Industrial Research−Indian Institute of Chemical Biology (CSIR−IICB), Kolkata 700032, India
- Indian Institute of Chemical Biology−Translational Research Unit of Excellence (IICB−TRUE), Kolkata 700091, India
| | - Prem Prakash Tripathi
- Council of Scientific and Industrial Research−Indian Institute of Chemical Biology (CSIR−IICB), Kolkata 700032, India
- Indian Institute of Chemical Biology−Translational Research Unit of Excellence (IICB−TRUE), Kolkata 700091, India
- Indian Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bhavya Channappa
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, Karnataka 570 015, India
| |
Collapse
|
8
|
Gholami R, Bamoniri A, Fatemeh Mirjalili BB. One-pot synthesis of chromenes in the presence of nano-cellulose/Ti (IV)/Fe 3O 4 as natural-based magnetic nano-catalysts under solvent free conditions. RSC Adv 2022; 12:27555-27563. [PMID: 36276047 PMCID: PMC9517711 DOI: 10.1039/d2ra05057a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/15/2022] [Indexed: 11/24/2022] Open
Abstract
In this study, the preparation of magnetic catalysts of titanium tetrachloride stabilized on nano-cellulose named cellulose/Ti(IV)/Fe3O4 was investigated. Various methods such as XRD, SEM, FT-IR, BET, EDX, TEM, TGA and VSM were used to characterize the catalysts. Then, the identified catalysts were used for the synthesis of various chromene skeletons via reaction of malononitrile, aldehyde and dimedone, 4-hydroxycoumarine or 2-naphthole at 70 °C under solvent free conditions. The spectroscopic methods used to determine the structure of the products include 13C NMR, 1H NMR and FT-IR. In this study, the preparation of magnetic catalysts of titanium tetrachloride stabilized on nano-cellulose named cellulose/Ti(IV)/Fe3O4 was investigated.![]()
Collapse
Affiliation(s)
- Raziyeh Gholami
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, I. R. Iran
| | - Abdolhamid Bamoniri
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, I. R. Iran
| | | |
Collapse
|
9
|
Thongni A, Phanrang PT, Dutta A, Nongkhlaw R. One-pot synthesis of 2-amino-3-cyano-4H-pyrans and pyran-annulated heterocycles using sodium citrate as an organo-salt based catalyst in aqueous ethanol. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1998535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Aiborlang Thongni
- Organic Synthesis Laboratory, Centre for Advanced Studies in Chemistry, North Eastern Hill University, Shillong, India
| | - Pynskhemborlang T. Phanrang
- Computational Laboratory, Centre for Advanced Studies in Chemistry, North Eastern Hill University, Shillong, India
| | - Arup Dutta
- Organic Synthesis Laboratory, Centre for Advanced Studies in Chemistry, North Eastern Hill University, Shillong, India
| | - Rishanlang Nongkhlaw
- Organic Synthesis Laboratory, Centre for Advanced Studies in Chemistry, North Eastern Hill University, Shillong, India
| |
Collapse
|
10
|
Amiri-Zirtol L, Amrollahi MA. Borax: An Environmentally Clean Catalyst for the Synthesize of Pyrano[2,3-c]Pyrazoles and Xanthene-1,8-Diones in H2O. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1954039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Ahmed EA, Soliman AM, Ali AM, Ali El‐Remaily MAEAA. Boosting the catalytic performance of zinc linked amino acid complex as an eco‐friendly for synthesis of novel pyrimidines in aqueous medium. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6197] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Eman A. Ahmed
- Department of Chemistry, Faculty of Science Sohag University Sohag Egypt
| | - Ahmed M.M. Soliman
- Department of Chemistry, Faculty of Science Sohag University Sohag Egypt
| | - Ali M. Ali
- Department of Chemistry, Faculty of Science Sohag University Sohag Egypt
| | | |
Collapse
|
12
|
Ezzatzadeh E, Hossaini Z. Four-component green synthesis of benzochromene derivatives using nano-KF/clinoptilolite as basic catalyst: study of antioxidant activity. Mol Divers 2019; 24:81-91. [PMID: 30830596 DOI: 10.1007/s11030-019-09935-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 02/26/2019] [Indexed: 11/24/2022]
Abstract
An efficient procedure for the synthesis of benzochromene derivatives employing 1-(6-hydroxy-2-isopropenyl-1-benzofuran-yl)-1-ethanone (euparin), aldehydes, alkyl bromides, dialkyl acetylenedicarboxylate and triphenylphosphine in the presence of KF/CP NPs as a heterogeneous base nano-catalyst in water at 80 °C is investigated. Also, the antioxidant activity of some synthesized compounds was studied. The workup of mixture of reaction is simple, and the products can be separated easily by filtration. KF/CP NPs showed a good improvement in the yield of the product and displayed significant reusable activity.
Collapse
Affiliation(s)
- Elham Ezzatzadeh
- Department of Chemistry, Ardabil Branch, Islamic Azad University, Ardabil, Iran.
| | | |
Collapse
|