1
|
New Organic-Inorganic Salt Based on Fluconazole Drug: TD-DFT Benchmark and Computational Insights into Halogen Substitution. Int J Mol Sci 2022; 23:ijms23158765. [PMID: 35955897 PMCID: PMC9369134 DOI: 10.3390/ijms23158765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, we report the synthesis of a new organic–inorganic molecular salt of the clinically used antifungal drug fluconazole, (H2Fluconazole).SnCl6.2H2O. By detailed investigation and analysis of its structural properties, we show that the structure represents a 0D structure built of alternating organic and inorganic zig-zag layers along the crystallographic c-axis and the primary supramolecular synthons in this salt are hydrogen bonding, F···π and halogen bonding interactions. Magnetic measurements reveal the co-existence of weak ferromagnetic behavior at low magnetic field and large diamagnetic contributions, indicating that the synthesized material behaves mainly as a diamagnetic material, with very low magnetic susceptibility and with a band gap energy of 3.6 eV, and the salt is suitable for semiconducting applications. Extensive theoretical study is performed to explain the acceptor donor reactivity of this compound and to predict the Cl-substitution effect by F, Br and I. The energy gap, frontier molecular orbitals (FMOs) and the different chemical reactivity descriptors were evaluated at a high theoretical level. Calculations show that Cl substitution by Br and I generates compounds with more important antioxidant ability and the intramolecular charge transfer linked to the inorganic anion.
Collapse
|
2
|
Guo Q, Zhang RF, Hua XW, Li QL, Du XM, Ru J, Ma CL. Syntheses, structures, in vitro cytostatic activity and antifungal activity evaluation of four diorganotin( iv) complexes based on norfloxacin and levofloxacin. NEW J CHEM 2022. [DOI: 10.1039/d1nj05742a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four organotin(iv) complexes have been designed and synthesized from the reactions of R2SnO (R = Me, Ph) with the corresponding ligands norfloxacin and levofloxacin. And the cytostatic and antifungal activity test have been done.
Collapse
Affiliation(s)
- Qiang Guo
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Ru-Fen Zhang
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Xue-Wen Hua
- College of Agronomy, Liaocheng University, 252000, Liaocheng, Shandong, China
| | - Qian-Li Li
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Xiu-Mei Du
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Jing Ru
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Chun-Lin Ma
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| |
Collapse
|
3
|
Sumrra SH, Zafar W, Javed H, Zafar M, Hussain MZ, Imran M, Nadeem MA. Facile synthesis, spectroscopic evaluation and antimicrobial screening of metal endowed triazole compounds. Biometals 2021; 34:1329-1351. [PMID: 34564801 DOI: 10.1007/s10534-021-00345-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 09/15/2021] [Indexed: 11/29/2022]
Abstract
The scientific interest in developing new complexes as inhibitors of bacterial biofilm related infections is constantly rising. The present work describes the chemical synthesis, structural and biological scrutiny of a triazole Schiff base ligand and its corresponding complexes. Triazole Schiff base, (2-methoxy-4-[(1H-1,2,4-triazol-3-ylimino)methyl]phenol) was synthesized from the condensation reaction of 3-amino-1,2,4-triazole and 4-hydroxy-3-methoxybenzaldehyde in an equimolar ratio. The triazole ligand (H2L) was characterized by physical (solubility, color, melting point), spectroscopic [UV-visible (UV-Vis), Fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance (1H-NMR) and mass spectra (MS)] and micro analysis to evaluate their elemental composition. The bidentate ligand was complexed with transition metal [VO(IV), Fe(II), Co(II), Ni(II), Cu(II) and Zn(II)] in 1:2 molar ratio. The complexes were characterized by physical (color, solubility, decomposition temperature, conductance and magnetic moment), FT-IR, UV-Vis and elemental analysis. Thermal stability and fluorescence properties of the compounds were also determined. Density functional theory based theoretical calculations were accomplished to gain more insight into spectroscopic properties. The frontier molecular orbital analysis revealed that the ligand was less reactive with reduced electron donating capability and more kinetic stability than complexes. The as-synthesized compounds were scrutinized for anti-bacterial and anti-fungal activity against selected strains. Cobalt complex exhibited highest antibacterial activity against Escherichia coli and nickel complex has shown highest antifungal activity against Aspergillus niger. All the compounds also showed good antioxidant activity. The theoretical results reflect consistency with the experimental findings signifying that such compounds could be the promising chemical scaffolds in the near future against microbial infectious.
Collapse
Affiliation(s)
- Sajjad H Sumrra
- Department of Chemistry, University of Gujrat, Gujrat, 50700, Pakistan.
| | - Wardha Zafar
- Department of Chemistry, University of Gujrat, Gujrat, 50700, Pakistan
| | - Hassan Javed
- Department of Chemistry, University of Gujrat, Gujrat, 50700, Pakistan
| | - Muddassar Zafar
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat, 50700, Pakistan
| | | | - Muhammad Imran
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Muhammad A Nadeem
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| |
Collapse
|
4
|
Zafar W, Sumrra SH, Chohan ZH. A review: Pharmacological aspects of metal based 1,2,4-triazole derived Schiff bases. Eur J Med Chem 2021; 222:113602. [PMID: 34139626 DOI: 10.1016/j.ejmech.2021.113602] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 05/06/2021] [Accepted: 06/01/2021] [Indexed: 12/19/2022]
Abstract
Clinical reports have highlighted the radical increase of antibiotic resistance. As a result, multidrug resistance has emerged as a serious threat to human health. Many organic compounds commonly used as drugs in the past, no longer have pure organic mode of action rather need bio-transformation or more activation. Bulk of research has shown that they need trace amount of metal ions incorporated within the chemistry of bioactive molecules for enhancement of their potentiality to fight aggressively against resistance. The deficiency of some metal ions can also be responsible for many diseases like growth retardation, pernicious anemia and heart diseases in infants. To overcome these problems, there is a need to introduce novel strategies which have new mechanism of action along with significant spectrum of biological activity, enhanced safety and efficacy. Bioinorganic compounds have played imperative role in developing the new strategy in the form of "Metal Based Drugs". In current years there have been momentous rise of interest in the application of metal based Schiff base compounds to treat various diseases which are difficult to be treated with conventional methodologies. The unique properties of metal chelates acting as an intermediate between conventional organic and inorganic compounds provided innovative opportunities in the field of pharmaceutical chemistry. In this review, we have exclusively focused on the search of metal based 1,2,4-triazole derived Schiff base compounds (synthesized, reported and reviewed in the past ten years) that possess various biological activities such as antifungal, antibacterial, antioxidant, antidiabetic, anthelmintic, anticancer, antiproliferative, cytotoxic and DNA-intercalation activity.
Collapse
Affiliation(s)
- Wardha Zafar
- Department of Chemistry, University of Gujrat, Gujrat, 50700, Pakistan
| | - Sajjad H Sumrra
- Department of Chemistry, University of Gujrat, Gujrat, 50700, Pakistan.
| | - Zahid H Chohan
- Department of Chemistry, Institute of Southern Punjab, Multan, Pakistan
| |
Collapse
|
5
|
Ibrahim MAA, Ahmed OAM, El-Taher S, Al-Fahemi JH, Moussa NAM, Moustafa H. Cospatial σ-Hole and Lone Pair Interactions of Square-Pyramidal Pentavalent Halogen Compounds with π-Systems: A Quantum Mechanical Study. ACS OMEGA 2021; 6:3319-3329. [PMID: 33553949 PMCID: PMC7860235 DOI: 10.1021/acsomega.0c05795] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 01/13/2021] [Indexed: 05/08/2023]
Abstract
In the spirit of the mounting interest in noncovalent interactions, the present study was conducted to scrutinize a special type that simultaneously involved both σ-hole and lone pair (lp) interactions with aromatic π-systems. Square-pyramidal pentavalent halogen-containing molecules, including X-Cl-F4, F-Y-F4, and F-I-X4 compounds (where X = F, Cl, Br, and I and Y = Cl, Br, and I) were employed as σ-hole/lp donors. On the other hand, benzene (BZN) and hexafluorobenzene (HFB) were chosen as electron-rich and electron-deficient aromatic π-systems, respectively. The investigation relied upon a variety of quantum chemical calculations that complement each other. The results showed that (i) the binding energy of the X-Y-F4···BZN complexes increased (i.e., more negative) as the Y atom had a larger magnitude of σ-hole, contrary to the pattern of X-Y-F4···HFB complexes; (ii) the interaction energies of X-Y-F4···BZN complexes were dominated by both dispersion and electrostatic contributions, while dispersive interactions dominated X-Y-F4···HFB complexes; and (iii) the X4 atoms in F-I-X4···π-system complexes governed the interaction energy pattern: the larger the X4 atoms were, the greater the interaction energies were, for the same π-system. The results had illuminating facets in regard to the rarely addressed cases of the σ-hole/lp contradictory scene.
Collapse
Affiliation(s)
| | - Ossama A. M. Ahmed
- Chemistry
Department, Faculty of Science, Minia University, Minia 61519, Egypt
- Department
of Chemistry, Faculty of Science, Cairo
University, Giza 12613, Egypt
| | - Sabry El-Taher
- Department
of Chemistry, Faculty of Science, Cairo
University, Giza 12613, Egypt
| | - Jabir H. Al-Fahemi
- Chemistry
Department, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Nayra A. M. Moussa
- Chemistry
Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Hussein Moustafa
- Department
of Chemistry, Faculty of Science, Cairo
University, Giza 12613, Egypt
| |
Collapse
|
6
|
Kapila A, Kaur M, Kaur H. Organotin(IV) complexes of tridentate (O,N,O) Schiff base ligand: computational, spectroscopic and biological studies. ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.matpr.2020.04.080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Sumrra SH, Habiba U, Zafar W, Imran M, Chohan ZH. A review on the efficacy and medicinal applications of metal-based triazole derivatives. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1839751] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Umme Habiba
- Department of Chemistry, University of Gujrat, Gujrat, Pakistan
| | - Wardha Zafar
- Department of Chemistry, University of Gujrat, Gujrat, Pakistan
| | - Muhammad Imran
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Zahid Hussain Chohan
- Department of Chemistry, University College of Management and Sciences, Khanewal, Pakistan
| |
Collapse
|
8
|
Choudhary VK, Bhatt AK, Dash D, Sharma N. Synthesis, characterization, thermal, computational and biological activity studies of new potential bioactive diorganotin (IV) nitrosubstitutedhydroxamates‐A comparative study. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Arvind Kumar Bhatt
- Department of BiotechnologyHimachal Pradesh University Summer Hill Shimla‐5 India
| | - Dibyajit Dash
- Department of ChemistrySant Longowal Institute of Engineering & Technology Longowal Sangrur Punjab‐148106 India
| | - Neeraj Sharma
- Department of ChemistryHimachal Pradesh University Summer Hill Shimla India
| |
Collapse
|