1
|
Dupont J, Leal BC, Lozano P, Monteiro AL, Migowski P, Scholten JD. Ionic Liquids in Metal, Photo-, Electro-, and (Bio) Catalysis. Chem Rev 2024; 124:5227-5420. [PMID: 38661578 DOI: 10.1021/acs.chemrev.3c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Ionic liquids (ILs) have unique physicochemical properties that make them advantageous for catalysis, such as low vapor pressure, non-flammability, high thermal and chemical stabilities, and the ability to enhance the activity and stability of (bio)catalysts. ILs can improve the efficiency, selectivity, and sustainability of bio(transformations) by acting as activators of enzymes, selectively dissolving substrates and products, and reducing toxicity. They can also be recycled and reused multiple times without losing their effectiveness. ILs based on imidazolium cation are preferred for structural organization aspects, with a semiorganized layer surrounding the catalyst. ILs act as a container, providing a confined space that allows modulation of electronic and geometric effects, miscibility of reactants and products, and residence time of species. ILs can stabilize ionic and radical species and control the catalytic activity of dynamic processes. Supported IL phase (SILP) derivatives and polymeric ILs (PILs) are good options for molecular engineering of greener catalytic processes. The major factors governing metal, photo-, electro-, and biocatalysts in ILs are discussed in detail based on the vast literature available over the past two and a half decades. Catalytic reactions, ranging from hydrogenation and cross-coupling to oxidations, promoted by homogeneous and heterogeneous catalysts in both single and multiphase conditions, are extensively reviewed and discussed considering the knowledge accumulated until now.
Collapse
Affiliation(s)
- Jairton Dupont
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Bárbara C Leal
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Lozano
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Adriano L Monteiro
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Migowski
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Jackson D Scholten
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| |
Collapse
|
2
|
Pan S, Gao C, Gui J, Hu B, Gai L, Qiao C, Liu C. Hierarchical TiO2 Microspheres Supported Ultrasmall Palladium Nanocrystals: a Highly Efficient Catalyst for Suzuki Reaction. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
3
|
Sharma N, Sharma C, Sharma S, Sharma S, Paul S. The synergetic effect of PdCr based bimetallic catalysts supported on RGO-TiO2 for organic transformations. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
4
|
Abstract
Over the past few decades, the use of transition metal nanoparticles (NPs) in catalysis has attracted much attention and their use in C–C bond forming reactions constitutes one of their most important applications. A huge variety of metal NPs, which have showed high catalytic activity for C–C bond forming reactions, have been developed up to now. Many kinds of stabilizers, such as inorganic materials, magnetically recoverable materials, porous materials, organic–inorganic composites, carbon materials, polymers, and surfactants have been utilized to develop metal NPs catalysts. This review classified and outlined the categories of metal NPs by the type of support.
Collapse
|
5
|
Chernyshev VM, Khazipov OV, Eremin DB, Denisova EA, Ananikov VP. Formation and stabilization of nanosized Pd particles in catalytic systems: Ionic nitrogen compounds as catalytic promoters and stabilizers of nanoparticles. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213860] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
6
|
A new palladium heterogeneous complex (Pd-Gu@BOEH): chemoselective, phosphine-free and practical nanocatalyst in carbon–carbon cross-coupling reaction. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04315-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
Pd on poly(1-vinylimidazole) decorated magnetic S-doped grafitic carbon nitride: an efficient catalyst for catalytic reduction of organic dyes. Sci Rep 2020; 10:13440. [PMID: 32778757 PMCID: PMC7417994 DOI: 10.1038/s41598-020-70457-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 07/24/2020] [Indexed: 12/16/2022] Open
Abstract
A novel magnetic catalyst, (SGCN/Fe3O4/PVIs/Pd) was synthesized by growing of poly(1-vinylimidazole) on the surface of ionic liquid decorated magnetic S-doped graphitic carbon nitride, followed by stabilization of palladium nanoparticles. Catalytic activity of the prepared heterogeneous catalyst was explored for the catalytic reduction of hazardous dyes, methyl orange and Rhodamine B, in the presence of NaBH4. Besides, the effects of the reaction variables on the catalytic activity were investigated in detail. The kinetics study established that dye reduction was the first order reaction and the apparent activation energy was calculated to be 72.63 kJ/mol and 68.35 kJ/mol1 for methyl orange and Rhodamine B dyes, respectively. Moreover, ΔS# and ΔH# values for methyl orange were found to be − 33.67 J/mol K and 68.39 kJ/mol respectively. These values for Rhodamine B were − 45.62 J/mol K and 65.92 kJ/mol. The recycling test verified that the catalyst possessed good stability and reusability, thereby making it a good candidate for the catalytic purposes. Furthermore, a possible catalytic mechanism for dye catalytic reduction over SGCN/Fe3O4/PVIs/Pd was proposed.
Collapse
|
8
|
Das MK, Bobb JA, Ibrahim AA, Lin A, AbouZeid KM, El-Shall MS. Green Synthesis of Oxide-Supported Pd Nanocatalysts by Laser Methods for Room-Temperature Carbon-Carbon Cross-Coupling Reactions. ACS APPLIED MATERIALS & INTERFACES 2020; 12:23844-23852. [PMID: 32340457 DOI: 10.1021/acsami.0c03331] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This work reports the design and development of a new class of highly active Pd nanocatalysts supported on substoichiometric oxides. These novel catalysts are generated by green laser synthesis methods to generate high-surface-area substoichiometric oxide nanoparticles followed by photoreduction in aqueous solutions to deposit highly active Pd nanocatalysts within the surface defects of the oxides. The laser methods eliminate the use of toxic chemicals, including hazardous solvents and chemical reducing agents, and allow efficient reduction of the Pd ions in aqueous solutions aided by the photogenerated electrons from the semiconductor support. The Pd catalysts incorporated within these oxides exhibit high activity for carbon-carbon bond-forming reactions. The Pd/TiO2 catalyst with 0.3 mol % Pd achieves 100% conversion in the reaction between bromobenzene and benzeneboronic acid to the biphenyl product within 240 minutes at room temperature without any external heating. With a catalyst loading of 0.3 mol % Pd in the microwave-assisted reaction between bromobenzene and benzeneboronic acid at 60 °C, 92 and 83% conversions to the biphenyl product are achieved within 5 min of reaction time using the Pd/TiO2 and Pd/ZnO catalysts, respectively. The results demonstrate a remarkable catalytic activity of the substoichiometric oxide-supported Pd catalysts with turnover frequencies (TOF, h-1) of 24 000, 10 000, and 3200 achieved under mirowave-assisted reactions at 60 °C for the 0.03 mol% Pd of the Pd/TiO2, Pd/ZnO, and Pd/ZrO2 catalysts, respectively. The high activity and good reusability of these nanocatalysts are attributed to the optimum catalyst-support interaction between the small Pd nanoparticles and the surface defects of the substoichiometric oxide support prepared by the laser vaporization-controlled condensation method.
Collapse
Affiliation(s)
- Mrinmoy K Das
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, United States
| | - Julian A Bobb
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, United States
| | - Amr A Ibrahim
- Department of Chemistry, Faculty of Science, Mansoura University, Al-Mansoura 35516, Egypt
| | - Andrew Lin
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, United States
| | - Khaled M AbouZeid
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, United States
| | - M Samy El-Shall
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, United States
| |
Collapse
|
9
|
Synthesis of Fe3O4@SiO2/isoniazid/Cu(II) magnetic nanocatalyst as a recyclable catalyst for a highly efficient preparation of quinolines in moderate conditions. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.114148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
10
|
Shukla A, Singha RK, Sasaki T, Prasad VVDN, Bal R. Preparation of Nanostructured Pd‐Fe
2
O
3
Catalyst for C–C Coupling Reaction. ChemistrySelect 2019. [DOI: 10.1002/slct.201902557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Astha Shukla
- Light Stock Processing DivisionCSIR-Indian Institute of Petroleum Dehradun- 248005 Uttarakhand India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad- 201002 India
| | - Rajib Kumar Singha
- Light Stock Processing DivisionCSIR-Indian Institute of Petroleum Dehradun- 248005 Uttarakhand India
| | - Takehiko Sasaki
- Department of Complexity Science and EngineeringGraduate school of Frontier SciencesThe University of Tokyo, Kashiwanoha Kashiwa-Shi Chiba 277-8561 Japan
| | - V V D N Prasad
- Light Stock Processing DivisionCSIR-Indian Institute of Petroleum Dehradun- 248005 Uttarakhand India
| | - Rajaram Bal
- Light Stock Processing DivisionCSIR-Indian Institute of Petroleum Dehradun- 248005 Uttarakhand India
| |
Collapse
|