1
|
Vaishali, Sharma S, Sharma P, Das D, K Vashistha V, Dhiman J, Sharma R, Kumar R, Singh MV, Kumar Y. Magnetic nanoparticle-catalysed synthesis of quinoline derivatives: A green and sustainable method. Heliyon 2024; 10:e40451. [PMID: 39654797 PMCID: PMC11625306 DOI: 10.1016/j.heliyon.2024.e40451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/03/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024] Open
Abstract
Greener and sustainable synthetic strategies have been evolving as the demanding domain of organic synthesis during the last decade. Green synthesis involves the development of method that decrease or eliminate the use of hazardous chemicals, and make use of renewable or recyclable resources. By incorporating the fundamentals and methodologies of green synthesis, organic chemists have the ability to develop valuable organic molecular frameworks which also demonstrate a strong commitment to environmental sustainability. In this context, the nanoparticle has garnered significant interest due to its various features, adhering to the principles of green synthesis. Specifically, magnetic nanoparticles have been trending extensive uses in green synthesis throughout the past decade. The role of magnetic nanoparticle has an irreplaceable place in the synthesis of biologically valuable frameworks named as quinoline. Quinoline are considered a privileged structure among organic compounds and offer a promising avenue for identifying lead structures in the search of new synthetic molecules (Saquinavir, Imiquimod and Reabamipide) having potential medicinal values and other important prospects. So, it's always indeed to the organic and medicinal chemist to develop biologically active frameworks by the green synthesis. The current manuscript consolidates the existing research on properties of environment-friendly magnetic nanoparticles for generating an extended range of valuable quinoline derivatives.
Collapse
Affiliation(s)
- Vaishali
- Department of Chemistry, Birla Institute of Higher Education, Pilani, Rajasthan, 333031, India
| | - Shubham Sharma
- Department of Chemistry, GLA University, Mathura, UP, 281406, India
| | - Pooja Sharma
- Department of Chemistry, Lovely Professional University, Jalandhar, Phagwara, Punjab, 144001, India
| | - D.K. Das
- Department of Chemistry, GLA University, Mathura, UP, 281406, India
| | | | - Jitender Dhiman
- Central Instrumentation laboratory, Central Pulp and Paper Research Institute, Saharanpur, Uttar Pradesh, India
| | - Rachna Sharma
- Department of Applied Science, TULA’S Institute Dehradun, Uttarakhand, 248197, India
| | - Rajesh Kumar
- Department of Chemistry, S.S.J. University Campus Almora, Uttarakhand, 263601, India
| | - Man vir Singh
- Department of Chemistry, Dev Bhoomi Uttarakhand University, Dehradun, Uttarakhand, 248007, India
| | - Yogendra Kumar
- Department of Chemistry, University of Zululand, Corner Guldengracht &, 2 Cent Cir, Road, Richards Bay, 3900, South Africa
| |
Collapse
|
2
|
Trilleras J, Charris-Molina A, Pérez-Gamboa A, Acosta-Guzman P, Quiroga J. Synthesis of pyrimido[4,5- b]quinolindiones and formylation: ultrasonically assisted reactions. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231128. [PMID: 38455992 PMCID: PMC10915537 DOI: 10.1098/rsos.231128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/13/2023] [Accepted: 01/24/2024] [Indexed: 03/09/2024]
Abstract
Ultrasound-assisted synthesis of pyrimidoquinolindione derivatives via a multicomponent reaction and subsequent formylation with Vilsmeier-Haack reagent were performed. Compounds were prepared by a one-pot method from aminopyrimidinones, dimedone and aromatic aldehydes through a Mannich-type reaction sequence, and then functionalized under ultrasound irradiation and Vilsmeier-Haack conditions to give β-chlorovinylaldehyde products. Ultrasonically assisted reactions, experimental simplicity, good yields without using metallic catalysts and the control of hazardous material release are features of this simple procedure.
Collapse
Affiliation(s)
- Jorge Trilleras
- Programa de Química, Facultad de Ciencias Básicas, Universidad del Atlántico, Puerto Colombia81007, Colombia
| | - Andrés Charris-Molina
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica Analítica y Química Física, Universidad de Buenos Aires, Buenos AiresC1428EGA, Argentina
| | - Alfredo Pérez-Gamboa
- Programa de Química, Facultad de Ciencias Básicas, Universidad del Atlántico, Puerto Colombia81007, Colombia
| | - Paola Acosta-Guzman
- Facultad de Ciencias, Departamento de Química, Universidad Nacional, Bogotá11001, Colombia
| | - Jairo Quiroga
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle, Cali760032, Colombia
| |
Collapse
|
3
|
Boroujerdian M, Rahimi S, Mirani Nezhad S, Pourmousavi SA, Nazarzadeh Zare E, Salimi F, Amirahmadi F, Daneshgar H. CoFe 2O 4@SiO 2-NH 2@MOF-5 magnetic nanocatalyst for the synthesis of biologically active quinazoline derivatives. ENVIRONMENTAL RESEARCH 2023; 236:116708. [PMID: 37482130 DOI: 10.1016/j.envres.2023.116708] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/25/2023]
Abstract
Metal-organic frameworks (MOFs) offered excellent catalytic activity due to their superior porosity, and high densities of catalytic sites in remarkable specific surfaces. In this research, we prepared a magnetic nanocomposite based on MOF-5 which is one of the prominent and practical structures that have been reported in many applications, and investigated the advantages of it as a catalyst. The multi-functional catalyst was prepared in five steps including (1) preparation of cobalt ferrite nanoparticles (CoFe2O4), (2) surface modification of cobalt ferrite using tetraethyl orthosilicate, (3) surface functionalization using 3-aminopropyl triethoxysilane, (4) preparation of MOF-5, (5) preparation of CoFe2O4@SiO2-NH2@MOF-5 nanocomposite. The resulting catalyst was evaluated by FTIR, FESEM, EDX, XRD, and VSM analyses. The CoFe2O4@SiO2-NH2@MOF-5 nanocomposite was applied as a catalyst for the quinazoline derivatives' synthesis. Various products were prepared with significant yields (90-98%) in short reaction times (20-60 min) without difficult work-up. In addition, the magnetic behavior of the catalyst allows it to be collected and recycled by a magnet and applied for six consecutive cycles without significantly reducing its efficiency. Quinazoline derivatives showed significant biological activities so their antioxidant activity was between 23.7% and 88.9% and their antimicrobial activity was in contradiction of E. coli, S. enterica, L. monocytogenes, S. aureus, and E. faecalis.
Collapse
Affiliation(s)
| | - Saeed Rahimi
- School of Chemistry, Damghan University, Damghan, 36716-45667, Iran
| | | | | | | | - Fatemeh Salimi
- Department of Cellular and Molecular Biology, School of Biology, Damghan University, Damghan, 36716-45667, Iran
| | - Fatemeh Amirahmadi
- Department of Cellular and Molecular Biology, School of Biology, Damghan University, Damghan, 36716-45667, Iran
| | - Hossein Daneshgar
- Department of Inorganic Chemistry, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, P. O. Box, 19839-63113, Tehran, Iran
| |
Collapse
|
4
|
Mahdipour P, Moradi L, Mirzaie M. Green Synthesis of Dihydropyrimido[4,5‐b]quinolinetriones by Sulfonic Acid‐Functionalized Silica‐Coated CoFe
2
O
4
as a Solid Acid Nanocatalyst under Thermal and Ultrasonic Conditions. ChemistrySelect 2022. [DOI: 10.1002/slct.202203824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Pegah Mahdipour
- Department of Organic Chemistry Faculty of Chemistry University of Kashan P.O. Box 8731753153 Kashan I. R. Iran 8731753153
| | - Leila Moradi
- Department of Organic Chemistry Faculty of Chemistry University of Kashan P.O. Box 8731753153 Kashan I. R. Iran 8731753153
| | | |
Collapse
|
5
|
Yadav P, Bhalla A. Recent Advances in Green Synthesis of Functionalized Quinolines of Medicinal Impact (2018‐Present). ChemistrySelect 2022. [DOI: 10.1002/slct.202201721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pooja Yadav
- Department of Chemistry and Centre of Advanced Studies in Chemistry Panjab University Chandigarh 160014 India
| | - Aman Bhalla
- Department of Chemistry and Centre of Advanced Studies in Chemistry Panjab University Chandigarh 160014 India
| |
Collapse
|
6
|
Sadjadi S, Koohestani F, Heravi MM. A novel composite of ionic liquid-containing polymer and metal-organic framework as an efficient catalyst for ultrasonic-assisted Knoevenagel condensation. Sci Rep 2022; 12:1122. [PMID: 35064158 PMCID: PMC8783012 DOI: 10.1038/s41598-022-05134-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/15/2021] [Indexed: 11/20/2022] Open
Abstract
1-Butyl-3-vinylimidazolium chloride was synthesized and polymerized with acrylamide to furnish an ionic liquid-containing polymer, which was then used for the formation of a composite with iron-based metal-organic framework. The resultant composite was characterized with XRD, TGA, FE-SEM, FTIR, EDS and elemental mapping analyses and its catalytic activity was appraised for ultrasonic-assisted Knoevenagel condensation. The results confirmed that the prepared composite could promote the reaction efficiently to furnish the corresponding products in high yields in very short reaction times. Moreover, the composite exhibited high recyclability up to six runs. It was also established that the activity of the composite was higher compared to pristine metal-organic framework or polymer.
Collapse
Affiliation(s)
- Samahe Sadjadi
- Gas Conversion Department, Faculty of Petrochemicals, Iran Polymer and Petrochemical Institute, PO Box 14975-112, Tehran, Iran.
| | - Fatemeh Koohestani
- Gas Conversion Department, Faculty of Petrochemicals, Iran Polymer and Petrochemical Institute, PO Box 14975-112, Tehran, Iran
| | - Majid M Heravi
- Department of Chemistry, School of Physics and Chemistry, Alzahra University, PO Box 1993891176, Vanak, Tehran, Iran.
| |
Collapse
|
7
|
Mittersteiner M, Farias FFS, Bonacorso HG, Martins MAP, Zanatta N. Ultrasound-assisted synthesis of pyrimidines and their fused derivatives: A review. ULTRASONICS SONOCHEMISTRY 2021; 79:105683. [PMID: 34562732 PMCID: PMC8473776 DOI: 10.1016/j.ultsonch.2021.105683] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/12/2021] [Accepted: 07/20/2021] [Indexed: 06/09/2023]
Abstract
The pyrimidine scaffold is present in many bioactive drugs; therefore, efficient synthetic routes that provide shorter reaction times, higher yields, and site-selective reactions are constantly being sought. Ultrasound (US) irradiation has emerged as an alternative energy source in the synthesis of these heterocyclic scaffolds, and over the last ten years there has been a significant increase in the number of publications mentioning US in either the construction or derivatization of the pyrimidine core. This review presents a detailed summary (with 140 references) of the effects of US (synergic or not) on the construction and derivatization of the pyrimidine core through classical reactions (e.g., multicomponent, cyclocondensation, cycloaddition, and alkylation reactions). The main points that were taken into consideration are as follows: chemo- and regioselectivity issues, and the results of conventional heating methods compared to US and mechanistic insights that are also presented and discussed for key reactions.
Collapse
Affiliation(s)
- Mateus Mittersteiner
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil.
| | - Fellipe F S Farias
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil
| | - Helio G Bonacorso
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil
| | - Marcos A P Martins
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil
| | - Nilo Zanatta
- Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil.
| |
Collapse
|
8
|
Composite of bentonite and cyclodextrin as an efficient catalyst for promoting chemical transformations in aqueous media. Sci Rep 2021; 11:5102. [PMID: 33658567 PMCID: PMC7930184 DOI: 10.1038/s41598-021-84349-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/15/2021] [Indexed: 11/08/2022] Open
Abstract
Combining the encapsulating capability of cyclodextrin and instinctive features of bentonite clay, a versatile metal free catalyst has been developed that could promote various chemical reactions such as Knoevenagel condensation, synthesis of xanthan and octahydroquinazolinones in aqueous media under ultrasonic irradiation. To prepare the catalyst, bentonite was Cl-functionalized and then reacted with isatin and guanidine successively to furnish amino functionalized bentonite. The latter then reacted with tosylated cyclodextrin. The resultant catalytic composite was characterized via XRD, SEM, EDS, BET, elemental mapping analysis, TGA and FTIR. The catalytic activity tests approved excellent activity of the catalyst as well as broad substrate scope. Notably, the catalyst could be simply recovered and reused for several reaction runs. Moreover, the activity of the composite was superior to that of its components.
Collapse
|
9
|
Saeidiroshan H, Moradi L. Efficient and green synthesis of dihydropyrimido[4,5‐
b
]quinolinetriones using MWCNTs@TEPA/Co (II) as a novel and eco‐friendly catalyst. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Hakimeh Saeidiroshan
- Department of Organic Chemistry, Faculty of ChemistryUniversity of Kashan P.O. Box 8731753153 Kashan Iran
| | - Leila Moradi
- Department of Organic Chemistry, Faculty of ChemistryUniversity of Kashan P.O. Box 8731753153 Kashan Iran
| |
Collapse
|