1
|
Abstract
Among transition metal nanoparticles, palladium nanoparticles (PdNPs) are recognized for their high catalytic activity in a wide range of organic transformations that are of academic and industrial importance. The increased interest in environmental issues has led to the development of various green approaches for the preparation of efficient, low-cost and environmentally sustainable Pd-nanocatalysts. Environmentally friendly solvents, non-toxic reducing reagents, biodegradable capping and stabilizing agents and energy-efficient synthetic methods are the main aspects that have been taken into account for the production of Pd nanoparticles in a green approach. This review provides an overview of the fundamental approaches used for the green synthesis of PdNPs and their catalytic application in sustainable processes as cross-coupling reactions and reductions with particular attention afforded to the recovery and reuse of the palladium nanocatalyst, from 2015 to the present.
Collapse
|
2
|
Du Y, Gou F, Gao D, Liu Z, Shao L, Qi C. Palladium nanoparticles encapsulated in polyimide nanofibers: An efficient and recyclable catalyst for coupling reaction. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yijun Du
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Shaoxing China
| | - Faliang Gou
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Shaoxing China
| | - Danning Gao
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Shaoxing China
| | - Zhifeng Liu
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Shaoxing China
| | - Linjun Shao
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Shaoxing China
| | - Chenze Qi
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Shaoxing China
| |
Collapse
|
3
|
Pang Q, Fan X. Facile Synthesis for Anchoring Highly Efficient Superfine Pd Nanoparticles on Carbon: Boosting Catalytic C–C Coupling. ChemistrySelect 2020. [DOI: 10.1002/slct.202000727] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Qingqing Pang
- Shandong ChambroadHolding Co.Ltd Binzhou 256600 Shandong Province People's Republic of China
| | - Xizheng Fan
- Shandong Chambroad Petrochemicals Co.Ltd Binzhou 256600, Shandong Province People's Republic of China
| |
Collapse
|