1
|
Yang D, Zhu Y, Li J, Yue Z, Zhou J, Wang X. Degradable, antibacterial and ultrathin filtrating electrospinning membranes of Ag-MOFs/poly(l-lactide) for air pollution control and medical protection. Int J Biol Macromol 2022; 212:182-192. [PMID: 35598727 DOI: 10.1016/j.ijbiomac.2022.05.112] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 02/07/2023]
Abstract
The widely used melt-blown polypropylene (PP) non-woven fabrics had no antibacterial functions and its large-scale use also increased the burden on the environment owing to its non-degradable property. Herein, silver (I) metal organic frameworks (Ag-2MI) were prepared with AgNO3 and 2-methylimidazole and embedded into degradable poly(l-lactide) (PLLA) to make an ultrathin filtration and antibacterial membrane by electrospinning technology with low loading of Ag-2MI. The morphology, mechanical properties, adsorption performance and antibacterial activities of the prepared films were tested and the results indicated that the addition of Ag-2MI could reduce the diameter of PLLA fibers from 910 nm to 520 nm (1.8 wt% of Ag-2MI), while the tensile strength, elongation at break of the membrane and the contact angle of the films were enhanced. Although the thickness of the prepared membranes was only about one-third of that of commercially available melt-blown cloth, they exhibited better filtering performances than the melt-blown cloth. The fiber membrane with low loading of 1.8 wt% Ag-2MI showed 99.99% inhibition rate against Escherichia coli and Staphylococcus aureus.
Collapse
Affiliation(s)
- Dangsha Yang
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Yanyan Zhu
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Jiangen Li
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Zhenqing Yue
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Jingheng Zhou
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Xinlong Wang
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China.
| |
Collapse
|
2
|
Bongoza U, Zamisa SJ, Munzeiwa WA, Omondi B. Silver(I) complexes of
N,N′
‐diarylformamidine ligands: Synthesis, crystal structures, and in
vitro
antibacterial studies. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Unathi Bongoza
- School of Chemistry & Physics, University of KwaZulu‐Natal, Westville Campus Durban South Africa
| | - Sizwe J. Zamisa
- School of Chemistry & Physics, University of KwaZulu‐Natal, Westville Campus Durban South Africa
| | - Wisdom A. Munzeiwa
- School of Chemistry & Physics, University of KwaZulu‐Natal, Westville Campus Durban South Africa
- Chemistry Department Bindura University of Science Education Bindura Zimbabwe
| | - Bernard Omondi
- School of Chemistry & Physics, University of KwaZulu‐Natal, Westville Campus Durban South Africa
| |
Collapse
|
3
|
Altowyan MS, Soliman SM, Lasri J, Eltayeb NE, Haukka M, Barakat A, El-Faham A. A New Pt(II) Complex with Anionic s-Triazine Based NNO-Donor Ligand: Synthesis, X-ray Structure, Hirshfeld Analysis and DFT Studies. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27051628. [PMID: 35268727 PMCID: PMC8911880 DOI: 10.3390/molecules27051628] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 12/02/2022]
Abstract
The reaction of PtCl2 with s-triazine-type ligand (HTriaz) (1:1) in acetone under heating afforded a new [Pt(Triaz)Cl] complex. Single-crystal X-ray diffraction analysis showed that the ligand (HTriaz) is an NNO tridentate chelate via two N-atoms from the s-triazine and hydrazone moieties and one oxygen from the deprotonated phenolic OH. The coordination environment of the Pt(II) is completed by one Cl−1 ion trans to the Pt-N(hydrazone). Hirshfeld surface analysis showed that the most dominant interactions are the H···H, H···C and O···H intermolecular contacts. These interactions contributed by 60.9, 11.2 and 8.3% from the whole fingerprint area, respectively. Other minor contributions from the Cl···H, C···N, N···H and C···C contacts were also detected. Among these interactions, the most significant contacts are the O···H, H···C and H···H interactions. The amounts of the electron transfer from the ligand groups to Pt(II) metal center were predicted using NBO calculations. Additionally, the electronic spectra were assigned based on the TD-DFT calculations.
Collapse
Affiliation(s)
- Mezna Saleh Altowyan
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Saied M. Soliman
- Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria 21321, Egypt;
- Correspondence: (S.M.S.); (J.L.); (A.B.)
| | - Jamal Lasri
- Department of Chemistry, Rabigh College of Science and Arts, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Correspondence: (S.M.S.); (J.L.); (A.B.)
| | - Naser E. Eltayeb
- Department of Chemistry, Rabigh College of Science and Arts, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Matti Haukka
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland;
| | - Assem Barakat
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Correspondence: (S.M.S.); (J.L.); (A.B.)
| | - Ayman El-Faham
- Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria 21321, Egypt;
| |
Collapse
|
4
|
Soliman SM, Haukka M, Al-Rasheed HH, El-Faham A. Molecular and supramolecular structures of self-assembled Cu(II) and Co(II) complexes with 4,4’-[6-(3,5-dimethyl-1H-pyrazol-1-yl)-1,3,5-triazine-2,4-diyl]dimorpholine ligand. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
5
|
Lasri J, Al-Rasheed HH, El-Faham A, Haukka M, Abutaha N, Soliman SM. Synthesis, structure and in vitro anticancer activity of Pd(II) complexes of mono- and bis-pyrazolyl-s-triazine ligands. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|