1
|
Zhang Y, Li X, Li K, Wang L, Luo X, Zhang Y, Sun N, Zhu M. DNA binding studies and in-vitro anticancer studies of novel lanthanide complexes. Int J Biol Macromol 2024; 279:135048. [PMID: 39208896 DOI: 10.1016/j.ijbiomac.2024.135048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Pancreatic cancer, is an aggressive type of cancer and the most common malignancy with a poor prognosis regarding metastatic disease (survival < 10 %). The development of Novel chemotherapeutic drugs holds significant prospects for practical applications. Here, this work focuses on the interaction between two lanthanide complexes, Yb-BZA and Er-BZA, with DNA, as well as their anticancer activity against pancreatic cancer. The relationship between complexes and DNA is revealed by fluorescence, absorption spectral titration, cyclic voltammetric (CV) experiments, indicating that the Yb-BZA and Er-BZA interact with FS-DNA by bind groove. Moreover, molecular docking technology was utilized to confirm the binding of Yb-BZA and Er-BZA with 1BNA and 4AV1. The cytotoxic effects of Yb-BZA and Er-BZA on cancer cells BxPC-3 were evaluated, Yb-BZA (IC50 = 6.459 μg/mL) is more effective than oxaliplatin (IC50 = 16.46 μg/mL) evaluated using cytotoxicity assay. Yb-BZA and Er-BZA has the potential to become a chemotherapy drug for pancreatic cancer cells.
Collapse
Affiliation(s)
- Yuehong Zhang
- The Key Laboratory of the Inorganic Molecule-based Chemistry of Liaoning Province and Laboratory of Coordination, College of Science, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Xinshu Li
- The Key Laboratory of the Inorganic Molecule-based Chemistry of Liaoning Province and Laboratory of Coordination, College of Science, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Kaisu Li
- The Key Laboratory of the Inorganic Molecule-based Chemistry of Liaoning Province and Laboratory of Coordination, College of Science, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Ling Wang
- The Key Laboratory of the Inorganic Molecule-based Chemistry of Liaoning Province and Laboratory of Coordination, College of Science, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Xin Luo
- The Key Laboratory of the Inorganic Molecule-based Chemistry of Liaoning Province and Laboratory of Coordination, College of Science, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Ying Zhang
- The Key Laboratory of the Inorganic Molecule-based Chemistry of Liaoning Province and Laboratory of Coordination, College of Science, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Na Sun
- The Key Laboratory of the Inorganic Molecule-based Chemistry of Liaoning Province and Laboratory of Coordination, College of Science, Shenyang University of Chemical Technology, Shenyang 110142, China; School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-based Material Chemistry, Nankai University, Tianjin 300350, China.
| | - Mingchang Zhu
- The Key Laboratory of the Inorganic Molecule-based Chemistry of Liaoning Province and Laboratory of Coordination, College of Science, Shenyang University of Chemical Technology, Shenyang 110142, China; College of Environmental and Safety Engineering, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, China.
| |
Collapse
|
2
|
Ibrahim ABM, Williem ES, Elkhalik S, Villinger A, Abbas SM. Structural investigations and antibacterial, antifungal and anticancer studies on zinc salicylaldimine complexes. Future Med Chem 2024; 16:1551-1560. [PMID: 38899770 PMCID: PMC11370977 DOI: 10.1080/17568919.2024.2363672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Aim: Zinc salicylaldimines may act as multidrug agents.Results: Three zinc salicylaldimines C1-C3 and respective ligands HL1-HL3 were examined for antimicrobial/anticancer drug action and C3 was structurally analyzed (tetrahedral, triclinic). Against two fungi, C1 inhibited Candida albicans with 12 mm (21 mm for amphotericin B). Among four bacteria, two ligands inhibited Staphylococcus aureus and Escherichia coli (9-10 mm), but the complexes inhibited all bacteria with 10-14 mm (21-26 mm for ampicillin). The half-maximal inhibitory concentrations for the ligands, complexes and doxorubicin were 195.5-310.7, 22.18-70.05 and 9.66 μM against cancerous MCF-7 cells and 186.4-199.9, 14.95-18.87 and 36.42 μM against normal BHK cells.Conclusion: The complexation produced pronounced enhancement in the ligand antimicrobial/anticancer activities, despite these activities are moderate comparing with standards.
Collapse
Affiliation(s)
- Ahmed BM Ibrahim
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
- Department of Chemistry, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Ereny S Williem
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62521, Egypt
| | - S Abd Elkhalik
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62521, Egypt
| | - Alexander Villinger
- Institut für Chemie, Universität Rostock, Albert-Einstein-Str. 3a, 18059, Rostock, Germany
| | - SM Abbas
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62521, Egypt
| |
Collapse
|
3
|
Mahmoudi C, Tahraoui Douma N, Mahmoudi H, Iurciuc (Tincu) CE, Popa M. Hydrogels Based on Proteins Cross-Linked with Carbonyl Derivatives of Polysaccharides, with Biomedical Applications. Int J Mol Sci 2024; 25:7839. [PMID: 39063081 PMCID: PMC11277554 DOI: 10.3390/ijms25147839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Adding carbonyl groups into the hydrogel matrix improves the stability and biocompatibility of the hydrogels, making them suitable for different biomedical applications. In this review article, we will discuss the use of hydrogels based on polysaccharides modified by oxidation, with particular attention paid to the introduction of carbonyl groups. These hydrogels have been developed for several applications in tissue engineering, drug delivery, and wound healing. The review article discusses the mechanism by which oxidized polysaccharides can introduce carbonyl groups, leading to the development of hydrogels through cross-linking with proteins. These hydrogels have tunable mechanical properties and improved biocompatibility. Hydrogels have dynamic properties that make them promising biomaterials for various biomedical applications. This paper comprehensively analyzes hydrogels based on cross-linked proteins with carbonyl groups derived from oxidized polysaccharides, including microparticles, nanoparticles, and films. The applications of these hydrogels in tissue engineering, drug delivery, and wound healing are also discussed.
Collapse
Affiliation(s)
- Chahrazed Mahmoudi
- Laboratory of Water and Environment, Faculty of Technology, University Hassiba Benbouali of Chlef, Chlef 02000, Algeria
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 700050 Iasi, Romania
| | - Naïma Tahraoui Douma
- Laboratory of Water and Environment, Faculty of Technology, University Hassiba Benbouali of Chlef, Chlef 02000, Algeria
| | - Hacene Mahmoudi
- National Higher School of Nanosciences and Nanotechnologies, Algiers 16000, Algeria;
| | - Camelia Elena Iurciuc (Tincu)
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 700050 Iasi, Romania
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No. 16, 700115 Iasi, Romania
| | - Marcel Popa
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 700050 Iasi, Romania
- Academy of Romanian Scientists, 3 Ilfov, 050044 Bucharest, Romania
| |
Collapse
|
4
|
Bonsignore R, Trippodo E, Di Gesù R, Carreca AP, Rubino S, Spinello A, Terenzi A, Barone G. Novel half Salphen cobalt(III) complexes: synthesis, DNA binding and anticancer studies. Dalton Trans 2024; 53:6311-6322. [PMID: 38487871 DOI: 10.1039/d4dt00092g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
While platinum(II)-based drugs continue to be employed in cancer treatments, the escalating occurrence of severe side effects has spurred researchers to explore novel sources for potential therapeutic agents. Notably, cobalt(III) has emerged as a subject of considerable interest due to its ubiquitous role in human physiology. Several studies investigating the anticancer effects of Salphen complexes derived from cobalt(III) have unveiled intriguing antiproliferative properties. In a bid to enhance our understanding of this class of compounds, we synthesized and characterized two novel half Salphen cobalt(III) complexes. Both compounds exhibited notable stability, even in the presence of physiologically relevant concentrations of glutathione. The application of spectroscopic and computational methodologies unravelled their interactions with duplex and G4-DNAs, suggesting an external binding affinity for these structures, with preliminary indications of selectivity trends. Importantly, antiproliferative assays conducted on 3D cultured SW-1353 cancer cells unveiled a compelling anticancer activity at low micromolar concentrations, underscoring the potential therapeutic efficacy of this novel class of cobalt(III) complexes.
Collapse
Affiliation(s)
- Riccardo Bonsignore
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Palermo 90128, Italy.
| | - Elisa Trippodo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Palermo 90128, Italy.
| | | | | | - Simona Rubino
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Palermo 90128, Italy.
| | - Angelo Spinello
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Palermo 90128, Italy.
| | - Alessio Terenzi
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Palermo 90128, Italy.
| | - Giampaolo Barone
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Palermo 90128, Italy.
| |
Collapse
|
5
|
Williem ES, Ibrahim ABM, Elkhalik SA, Marek J, Abbas SM. In vitro biological activity of cobalt(II) complexes with salicylaldimine ligands in microbial and cancer cells. Future Med Chem 2023; 15:1415-1426. [PMID: 37584209 DOI: 10.4155/fmc-2023-0190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023] Open
Abstract
Background: More studies using cobalt complexes as drugs are needed. Results: The drug action of two cobalt salicylaldimines was determined. The complexes and amphotericin B (20 mg/ml) inhibited Candida albicans at 9-15 and 21 mm. This concentration of both ligands inhibited Staphylococcus aureus at 10 mm and one ligand inhibited Escherichia coli at 9 mm, but the complexes and ampicillin inhibited four bacteria at 9-20 and 21-26 mm. The ligands were inactive against cancer and normal cells, but the complexes and doxorubicin provided IC50 values of 28.18-54.19 and 9.66 μM against MCF-7 cells and 15.76-20.49 and 36.42 μM against BHK cells. Conclusion: The ligands' activity was much improved by complexation, although they remained substandard.
Collapse
Affiliation(s)
- Ereny S Williem
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62521, Egypt
| | - Ahmed B M Ibrahim
- Department of Chemistry, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - S Abd Elkhalik
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62521, Egypt
| | - Jaromír Marek
- Core Facility Biomolecular Interactions & Crystallography, CEITEC MU, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - S M Abbas
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62521, Egypt
| |
Collapse
|
6
|
Krishnan D, Sheela A. A Review on DNA/BSA binding and Cytotoxic properties of Multinuclear Schiff’s base Complexes. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
7
|
Alfonso‐Herrera LA, Rosete‐Luna S, Hernández‐Romero D, Rivera‐Villanueva JM, Olivares‐Romero JL, Cruz‐Navarro JA, Soto‐Contreras A, Arenaza‐Corona A, Morales‐Morales D, Colorado‐Peralta R. Transition Metal Complexes with Tridentate Schiff Bases (O N O and O N N) Derived from Salicylaldehyde: An Analysis of Their Potential Anticancer Activity. ChemMedChem 2022; 17:e202200367. [PMID: 36068174 PMCID: PMC9826236 DOI: 10.1002/cmdc.202200367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/05/2022] [Indexed: 01/11/2023]
Abstract
Although it is known that the first case of cancer was recorded in ancient Egypt around 1600 BC, it was not until 1917 during the First World War and the development of mustard gas that chemotherapy against cancer became relevant; however, its properties were not recognised until 1946 to later be used in patients. In this sense, the use of metallopharmaceuticals in cancer therapy was extensively explored until the 1960s with the discovery of cisplatin and its anticancer activity. From that date to the present, the search for more effective, more selective metallodrugs with fewer side effects has been an area of continuous exploration. Efforts have led to considering a wide variety of metals from the periodic table, mainly from the d-block, as well as a wide variety of organic ligands, preferably with proven biological activity. In this sense, various research groups have found an ideal binder in Schiff bases, since their raw materials are easily accessible, their synthesis conditions are friendly and their denticity can be manipulated. Therefore, in this review, we have explored the anticancer and antitumor activity reported in the literature for coordination complexes of d-block metals coordinated with tridentate Schiff bases (O N O and O N N) derived from salicylaldehyde. For this work, we have used the main scientific databases CCDC® and SciFinder®.
Collapse
Affiliation(s)
- Luis A. Alfonso‐Herrera
- Universidad Veracruzana Facultad de Ciencias QuímicasProlongación de Oriente 6, No. 100994340, OrizabaVeracruzMéxico
- Universidad Autónoma de Nuevo León Facultad de Ingeniería Civil Departamento de Ecomateriales y Energía Av. Universidad S/N Ciudad Universitaria64455San Nicolás de los GarzaNuevo LeónMéxico
| | - Sharon Rosete‐Luna
- Universidad Veracruzana Facultad de Ciencias QuímicasProlongación de Oriente 6, No. 100994340, OrizabaVeracruzMéxico
| | - Delia Hernández‐Romero
- Universidad Veracruzana Facultad de Ciencias QuímicasProlongación de Oriente 6, No. 100994340, OrizabaVeracruzMéxico
| | - José M. Rivera‐Villanueva
- Universidad Veracruzana Facultad de Ciencias QuímicasProlongación de Oriente 6, No. 100994340, OrizabaVeracruzMéxico
| | - José L. Olivares‐Romero
- Instituto de Ecología A.C. Red de Estudios Moleculares AvanzadosClúster Científico y Tecnológico BioMimic® Carretera Antigua a Coatepec, No. 35191070Xalapa, VeracruzMéxico
| | - J. Antonio Cruz‐Navarro
- Universidad Veracruzana Facultad de Ciencias QuímicasProlongación de Oriente 6, No. 100994340, OrizabaVeracruzMéxico
- Universidad Autónoma del Estado de HidalgoÁrea Académica de Química Km 4.5 Carretera Pachuca-Tulancingo42184, Mineral de la ReformaHidalgoMéxico
| | - Anell Soto‐Contreras
- Universidad Veracruzana Facultad de Ciencias QuímicasProlongación de Oriente 6, No. 100994340, OrizabaVeracruzMéxico
- Universidad VeracruzanaFacultad de Ciencias Biológicas y Agropecuarias Km 177 Camino Peñuela-Amatlán S/N94500, Peñuela, Amatlán de los ReyesVeracruzMéxico
| | - Antonino Arenaza‐Corona
- Universidad Nacional Autónoma de México Instituto de Química, Circuito Exterior S/N04510Ciudad de MéxicoMéxico
| | - David Morales‐Morales
- Universidad Nacional Autónoma de México Instituto de Química, Circuito Exterior S/N04510Ciudad de MéxicoMéxico
| | - Raúl Colorado‐Peralta
- Universidad Veracruzana Facultad de Ciencias QuímicasProlongación de Oriente 6, No. 100994340, OrizabaVeracruzMéxico
| |
Collapse
|
8
|
Mondal SS, Jaiswal N, Tripathy RK, Bera PS, Chanda N, Behera JN, Ghosal S, Saha TK. Monosaccharide Linked Schiff Base Metal Complexes of Cu(II), Zn(II) and Mn(II): Exploring the Antiproliferative Activity and Cell Death Mechanism. ChemistrySelect 2022. [DOI: 10.1002/slct.202200060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shyam Sundar Mondal
- Department of Chemistry National Institute of Technology Durgapur Durgapur 713209 West Bengal India
| | - Namita Jaiswal
- Department of Biotechnology National Institute of Technology Durgapur Durgapur 713209 West Bengal India
| | - Rajat Kumar Tripathy
- School of Chemical Sciences National Institute of Science Education and Research Bhubaneswar 752050 Odisha India
- Homi Bhabha National Institute Mumbai 400094 India
| | - Partha Sarathi Bera
- Department of Chemistry National Institute of Technology Durgapur Durgapur 713209 West Bengal India
| | - Nripen Chanda
- Department of Materials Processing and Microsystems Laboratory CSIR-Central Mechanical Engineering Research Institute Durgapur 713209 West Bengal India
| | - J. N. Behera
- School of Chemical Sciences National Institute of Science Education and Research Bhubaneswar 752050 Odisha India
- Homi Bhabha National Institute Mumbai 400094 India
| | - Subhas Ghosal
- Department of Chemistry National Institute of Technology Durgapur Durgapur 713209 West Bengal India
| | - Tanmoy Kumar Saha
- Department of Chemistry National Institute of Technology Durgapur Durgapur 713209 West Bengal India
| |
Collapse
|
9
|
Shekhar S, Sharma S, Okolie JA, Kumar A, Sharma B, Meena MK, Bhagi AK, Sarkar A. Synthesis, structural elucidation, biological screening, and DFT calculations of Cu (II), Ni (II), Mn (II), and Co (II) complexes of 20
Z
‐
N
‐((
Z
)‐2‐(6‐nitrobenzo[
d
]thiazol‐2‐ylimino)‐1,2‐diphenylethylidene)‐5‐nitrobenzo[
d
]thiazol‐2‐amine Schiff base ligand. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shashank Shekhar
- Department of Chemistry Netaji Subhas University of Technology Delhi India
| | - Shreya Sharma
- Department of Chemistry Netaji Subhas University of Technology Delhi India
| | | | - Amit Kumar
- Department of Chemistry, Dayal Singh College University of Delhi India
| | - Bhasha Sharma
- Department of Chemistry, Shivaji College, Raja Garden, Ring Road, New Delhi‐110027 University of Delhi India
| | - Mahendra Kumar Meena
- Department of Chemistry, Shivaji College, Raja Garden, Ring Road, New Delhi‐110027 University of Delhi India
| | - Ajay Kumar Bhagi
- Department of Chemistry, Dayal Singh College University of Delhi India
| | - Anjana Sarkar
- Department of Chemistry Netaji Subhas University of Technology Delhi India
| |
Collapse
|
10
|
Depicting the DNA Binding and Cytotoxicity Studies against Human Colorectal Cancer of Aquabis (1-Formyl-2-Naphtholato-k2O,O′) Copper(II): A Biophysical and Molecular Docking Perspective. CRYSTALS 2021. [DOI: 10.3390/cryst12010015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this study, we attempted to examine the biological activity of the copper(II)–based small molecule aquabis (1-formyl-2-naphtholato-k2O,O′)copper(II) (1) against colon cancer. The characterization of complex 1 was established by analytical and spectral methods in accordance with the single-crystal X-ray results. A monomeric unit of complex 1 exists in an O4 (H2O) coordination environment with slightly distorted square pyramidal geometry (τ = ~0.1). The interaction of complex 1 with calf thymus DNA (ctDNA) was determined by employing various biophysical techniques, which revealed that complex 1 binds to ctDNA at the minor groove with a binding constant of 2.38 × 105 M–1. The cytotoxicity of complex 1 towards human colorectal cell line (HCT116) was evaluated by the MTT assay, which showed an IC50 value of 11.6 μM after treatment with complex 1 for 24 h. Furthermore, the apoptotic effect induced by complex 1 was validated by DNA fragmentation pattern, which clarified that apoptosis might be regulated through the mitochondrial-mediated production of reactive oxygen species (ROS) causing DNA damage pathway. Additionally, molecular docking was also carried out to confirm the recognition of complex 1 at the minor groove.
Collapse
|