1
|
Plunkett S, Diccianni JB, Panish R, Balsells J. Synthesis of 3-Aminoazaindazoles via Cu-Catalyzed Cross Coupling of Isocyanides. Org Lett 2024; 26:6933-6938. [PMID: 39101578 DOI: 10.1021/acs.orglett.4c02707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Nitrogen-containing heterocycles are commonly encountered in drug discovery, but the synthesis of such ring structures is not always efficient. Fused heterocyclic rings, in particular, can be challenging to synthesize. Herein, we report a highly convergent synthesis of 3-aminoazaindazoles via a Cu-catalyzed reaction between isocyanides and 3-halo-2-hydrazineylpyridines (and analogues). Reaction optimization through high-throughput experimentation (HTE) identified a novel set of exogenous ligand-free Cu conditions utilizing a cheap and readily available catalyst. The reaction displays high functional group tolerance and has the potential to be highly enabling for medicinal chemistry efforts. A putative mechanism is described as well as preliminary mechanistic experiments.
Collapse
Affiliation(s)
- Shane Plunkett
- Discovery Process Research, Janssen R&D, Spring House, Pennsylvania 19477, United States
| | - Justin B Diccianni
- Global Discovery Chemistry, Janssen R&D, Spring House, Pennsylvania 19477, United States
| | - Robert Panish
- Discovery Process Research, Janssen R&D, San Diego, California 92121, United States
| | - Jaume Balsells
- Discovery Process Research, Janssen R&D, Spring House, Pennsylvania 19477, United States
| |
Collapse
|
2
|
Paganelli S, Massimi N, Di Michele A, Piccolo O, Rampazzo R, Facchin M, Beghetto V. Use of carboxymethyl cellulose as binder for the production of water-soluble catalysts. Int J Biol Macromol 2024; 270:132541. [PMID: 38777012 DOI: 10.1016/j.ijbiomac.2024.132541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/09/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
Bio-based polymers are materials of high interest given the harmful environmental impact that involves the use of non-biodegradable fossil products for industrial applications. These materials are also particularly interesting as bio-based ligands for the preparation of metal nanoparticles (MNPs), employed as catalysts for the synthesis of high value chemicals. In the present study, Ru (0) and Rh(0) Metal Nanoparticles supported on Sodium Carboxymethyl cellulose (MNP(0)s-CMCNa) were prepared by simply mixing RhCl3x3H2O or RuCl3 with an aqueous solution of CMCNa, followed by NaBH4 reduction. The formation of MNP(0)s-CMCNa was confirmed by FT-IR and XRD, and their size estimated to be around 1.5 and 2.2 nm by TEM analysis. MNP(0)s-CMCNa were employed for the hydrogenation of (E)-cinnamic aldehyde, furfural and levulinic acid. Hydrogenation experiments revealed that CMCNa is an excellent ligand for the stabilization of Rh(0) and Ru(0) nanoparticles allowing to obtain high conversions (>90 %) and selectivities (>98 %) with all substrates tested. Easy recovery by liquid/liquid extraction allowed to separate the catalyst from the reaction products, and recycling experiments demonstrated that MNPs-CS were highly efficiency up to three times in best hydrogenation conditions.
Collapse
Affiliation(s)
- Stefano Paganelli
- Department of Molecular Sciences and Nanosystems, University Ca' Foscari of Venice, Via Torino 155, 30172 Mestre, Italy; Consorzio Interuniversitario per le Reattività Chimiche e la Catalisi (CIRCC), Via C. Ulpiani 27, 70126 Bari, Italy.
| | - Nicola Massimi
- Department of Molecular Sciences and Nanosystems, University Ca' Foscari of Venice, Via Torino 155, 30172 Mestre, Italy
| | - Alessandro Di Michele
- Università degli Studi di Perugia, Dipartimento Fisica e Geologia, Via Pascoli, 06123 Perugia, Italy
| | - Oreste Piccolo
- Studio di Consulenza Scientifica (SCSOP), Via Bornò 5, 23896 Sirtori, LC, Italy
| | - Rachele Rampazzo
- Department of Molecular Sciences and Nanosystems, University Ca' Foscari of Venice, Via Torino 155, 30172 Mestre, Italy
| | - Manuela Facchin
- Department of Molecular Sciences and Nanosystems, University Ca' Foscari of Venice, Via Torino 155, 30172 Mestre, Italy
| | - Valentina Beghetto
- Department of Molecular Sciences and Nanosystems, University Ca' Foscari of Venice, Via Torino 155, 30172 Mestre, Italy; Consorzio Interuniversitario per le Reattività Chimiche e la Catalisi (CIRCC), Via C. Ulpiani 27, 70126 Bari, Italy; Crossing S.r.l., Viale della Repubblica 193/b, 31100 Treviso, Italy.
| |
Collapse
|
3
|
Paganelli S, Brugnera E, Di Michele A, Facchin M, Beghetto V. Chitosan as a Bio-Based Ligand for the Production of Hydrogenation Catalysts. Molecules 2024; 29:2083. [PMID: 38731574 PMCID: PMC11085195 DOI: 10.3390/molecules29092083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Bio-based polymers are attracting increasing interest as alternatives to harmful and environmentally concerning non-biodegradable fossil-based products. In particular, bio-based polymers may be employed as ligands for the preparation of metal nanoparticles (M(0)NPs). In this study, chitosan (CS) was used for the stabilization of Ru(0) and Rh(0) metal nanoparticles (MNPs), prepared by simply mixing RhCl3 × 3H2O or RuCl3 with an aqueous solution of CS, followed by NaBH4 reduction. The formation of M(0)NPs-CS was confirmed by Fourier Transform Infrared Spectroscopy (FT-IR), Differential Scanning Calorimetry (DSC), Thermal Gravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray Analysis (EDX), Transmission Electron Microscopy (TEM) and X-ray Diffraction (XRD). Their size was estimated to be below 40 nm for Rh(0)-CS and 10nm for Ru(0)-CS by SEM analysis. M(0)NPs-CS were employed for the hydrogenation of (E)-cinnamic aldehyde and levulinic acid. Easy recovery by liquid-liquid extraction made it possible to separate the catalyst from the reaction products. Recycling experiments demonstrated that M(0)NPs-CS were highly efficient up to four times in the best hydrogenation conditions. The data found in this study show that CS is an excellent ligand for the stabilization of Rh(0) and Ru(0) nanoparticles, allowing the production of some of the most efficient, selective and recyclable hydrogenation catalysts known in the literature.
Collapse
Affiliation(s)
- Stefano Paganelli
- Department of Molecular Sciences and Nanosystems, University Ca’ Foscari of Venice, Via Torino 155, 30172 Mestre, Italy; (E.B.); (M.F.)
- Consorzio Interuniversitario per le Reattività Chimiche e la Catalisi (CIRCC), Via C. Ulpiani 27, 70126 Bari, Italy
| | - Eleonora Brugnera
- Department of Molecular Sciences and Nanosystems, University Ca’ Foscari of Venice, Via Torino 155, 30172 Mestre, Italy; (E.B.); (M.F.)
| | - Alessandro Di Michele
- Dipartimento Fisica e Geologia, Università degli Studi di Perugia, Via Pascoli, 06123 Perugia, Italy;
| | - Manuela Facchin
- Department of Molecular Sciences and Nanosystems, University Ca’ Foscari of Venice, Via Torino 155, 30172 Mestre, Italy; (E.B.); (M.F.)
| | - Valentina Beghetto
- Department of Molecular Sciences and Nanosystems, University Ca’ Foscari of Venice, Via Torino 155, 30172 Mestre, Italy; (E.B.); (M.F.)
- Consorzio Interuniversitario per le Reattività Chimiche e la Catalisi (CIRCC), Via C. Ulpiani 27, 70126 Bari, Italy
- Crossing S.R.L., Viale della Repubblica 193/b, 31100 Treviso, Italy
| |
Collapse
|
4
|
Claude G, Puccio D, Roca Jungfer M, Hagenbach A, Spreckelmeyer S, Abram U. Technetium Complexes with an Isocyano-alkyne Ligand and Its Reaction Products. Inorg Chem 2023. [PMID: 37494664 DOI: 10.1021/acs.inorgchem.3c01638] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The attachment of an ethyne substituent in the para position of phenylisocyanide, CNPhpC≡CH, enables the isocyanide to replace carbonyl ligands in the coordination sphere of common technetium(I) starting materials such as (NBu4)[Tc2(μ-Cl)3(CO)6]. The ligand exchange proceeds under thermal conditions and finally forms the corresponding hexakis(isocyanide)technetium(I) complex. The product undergoes a copper-catalyzed cycloaddition ("Click" reaction), e.g., with benzyl azide, which gives the [Tc(CNPhazole)6]+ cation. The free, uncoordinated "Click" product is obtained from a reaction of the corresponding tetrakis(CNPhazole)copper(I) complex and NaCN. It readily reacts with mer-[Tc(CO)3(tht)(PPh3)2](BF4) (tht = tetrahydrothiophene) under exchange of the thioether ligand. Alternatively, [Cu(CNPhazole)4]+ can be used as a transmetalation reagent for the synthesis of the hexakis(isocyanide)technetium(I) complex, which is the preferable approach for the synthesis of the technetium complex with the short-lived nuclear isomer 99mTc, and a corresponding protocol for [99mTc(CNPhazole)6]+ is reported. The 99Tc and copper complexes have been studied by single-crystal X-ray diffraction and/or spectroscopic methods including IR and multinuclear NMR spectroscopy.
Collapse
Affiliation(s)
- Guilhem Claude
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Fabeckstr. 34/36, 14195 Berlin, Germany
| | - Denis Puccio
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Fabeckstr. 34/36, 14195 Berlin, Germany
| | - Maximilian Roca Jungfer
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Fabeckstr. 34/36, 14195 Berlin, Germany
| | - Adelheid Hagenbach
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Fabeckstr. 34/36, 14195 Berlin, Germany
| | - Sarah Spreckelmeyer
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Ulrich Abram
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Fabeckstr. 34/36, 14195 Berlin, Germany
| |
Collapse
|
5
|
Synthesis of 2-Alkylaryl and Furanyl Acetates by Palladium Catalysed Carbonylation of Alcohols. Catalysts 2022. [DOI: 10.3390/catal12080883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The one-pot alkoxycarbonylation of halo-free alkylaryl and furanyl alcohols represents a sustainable alternative for the synthesis of alkylaryl and furanyl acetates. In this paper, the reaction between benzyl alcohol, chosen as a model substrate, CH3OH and CO was tested in the presence of a homogeneous palladium catalyst, an activator (isopropenyl acetate (IPAc) or dimethyl carbonate (DMC)) and a base (Cs2CO3). The influence of various reaction parameters such as the CO pressure, ligand and palladium precursor employed, mmol% catalyst load, temperature and time were investigated. The results demonstrate that decreasing the CO pressure from 50 bar to 5 bar at 130 °C for 18 h increases yields in benzyl acetate from 36% to over 98%. Further experiments were performed in the presence of piperonyl and furfuryl alcohol, interesting substrates employed for the synthesis of various fine chemicals. Moreover, furfuryl alcohol is a lignocellulosic-derived building block employed for the synthesis of functionalized furans such as 2-alkylfurfuryl acetates. Both the alcohols were successfully transformed in the corresponding acetate (yields above 96%) in rather mild reaction conditions (5–0.01 mol% catalyst, 5–2 bar CO pressure, 130 °C, 4–18h), demonstrating that the alkoxycarbonylation of alcohols represents a promising sustainable alternative to more impactful industrial practices adopted to date for the synthesis of alkylaryl and furfuryl acetates.
Collapse
|
6
|
Yin X, Liu C, Liu S, Cao M, Rawson JM, Xu Y, Zhang B. Structural characterization and luminescence properties of trigonal Cu( i) iodine/bromine complexes comprising cation–π interactions. NEW J CHEM 2022. [DOI: 10.1039/d2nj00318j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Trigonal copper(i) complexes comprising cation–π interactions achieve satisfactory photoluminescence properties.
Collapse
Affiliation(s)
- Xiaolin Yin
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Chunmei Liu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Shuang Liu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Mengmeng Cao
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Jeremy M. Rawson
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, N9B 3P4, Canada
| | - Yan Xu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Bin Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|