1
|
Jia H, Cheng M, Zhao R, Zheng P, Ren F, Nan Y, Huang M, Li Y. Excellent Pd-Loaded Magnetic Nanocatalyst on Multicarboxyl and Boronic Acid Biligands. ACS OMEGA 2024; 9:17817-17831. [PMID: 38680317 PMCID: PMC11044249 DOI: 10.1021/acsomega.3c07133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/28/2023] [Accepted: 03/27/2024] [Indexed: 05/01/2024]
Abstract
An effective palladium nanocatalyst (Fe3O4@SiO2-FPBA-DTPA-Pd) was proposed and prepared, which was immobilized on magnetic silica with ethylenediamine pentaacetic acid and formylphenylboronic acid as biligands. A series of characterizations showed that Fe3O4@SiO2-FPBA-DTPA-Pd was 5-15 nm and contained 1.44 mmol/g Pd2+/Pd0. It was stable below 232.7 °C, and its saturation magnetization value was 21.17 emu/g which was easily recycled by a magnet. Its catalytic ability was evaluated through 7 Suzuki reactions and 15 Heck reactions. Results showed that the yields of 14 reactions catalyzed by Fe3O4@SiO2-FPBA-DTPA-Pd were more than 90%, while were better than those of the other two immobilized Pd catalysts on a single diethyltriamine pentaacetic acid (DTPA) group or boronic acid group. Moreover, Fe3O4@SiO2-FPBA-DTPA-Pd showed good reusability in both Suzuki and Heck reactions. In two model Suzuki and Heck reactions, after seven cycles, its yields were still above 95% without significant loss, which exceeded those of many reported catalysts; therefore, it has great potential in future large-scale industrial production.
Collapse
Affiliation(s)
- Haijiao Jia
- Tianjin Key Laboratory for Modern Drug
Delivery and High-Efficiency, Collaborative Innovation Center of Chemical
Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Mengqi Cheng
- Tianjin Key Laboratory for Modern Drug
Delivery and High-Efficiency, Collaborative Innovation Center of Chemical
Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Ran Zhao
- Tianjin Key Laboratory for Modern Drug
Delivery and High-Efficiency, Collaborative Innovation Center of Chemical
Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Pingyi Zheng
- Tianjin Key Laboratory for Modern Drug
Delivery and High-Efficiency, Collaborative Innovation Center of Chemical
Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Fangfang Ren
- Tianjin Key Laboratory for Modern Drug
Delivery and High-Efficiency, Collaborative Innovation Center of Chemical
Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yaqin Nan
- Tianjin Key Laboratory for Modern Drug
Delivery and High-Efficiency, Collaborative Innovation Center of Chemical
Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Mengting Huang
- Tianjin Key Laboratory for Modern Drug
Delivery and High-Efficiency, Collaborative Innovation Center of Chemical
Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Youxin Li
- Tianjin Key Laboratory for Modern Drug
Delivery and High-Efficiency, Collaborative Innovation Center of Chemical
Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
2
|
Opportunities from Metal Organic Frameworks to Develop Porous Carbons Catalysts Involved in Fine Chemical Synthesis. Catalysts 2023. [DOI: 10.3390/catal13030541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
In the last decade, MOFs have been proposed as precursors of functional porous carbons with enhanced catalytic performances by comparison with other traditional carbonaceous catalysts. This area is rapidly growing mainly because of the great structural diversity of MOFs offering almost infinite possibilities. MOFs can be considered as ideal platforms to prepare porous carbons with highly dispersed metallic species or even single-metal atoms under strictly controlled thermal conditions. This review briefly summarizes synthetic strategies to prepare MOFs and MOF-derived porous carbons. The main focus relies on the application of the MOF-derived porous carbons to fine chemical synthesis. Among the most explored reactions, the oxidation and reduction reactions are highlighted, although some examples of coupling and multicomponent reactions are also presented. However, the application of this type of catalyst in the green synthesis of biologically active heterocyclic compounds through cascade reactions is still a challenge.
Collapse
|
3
|
Hegde S, Nizam A, Vijayan A, Dateer RB, Krishna SBN. Palladium immobilized on guanidine functionalized magnetic nanoparticles: a highly effective and recoverable catalyst for ultrasound aided Suzuki–Miyaura cross-coupling reactions. NEW J CHEM 2023; 47:18856-18864. [DOI: 10.1039/d3nj03444e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The Fe3O4@SiO2-TCT-Gua-Pd catalyst anchored with guanidine moiety on Fe3O4 nanoparticles was synthesised for Suzuki–Miyaura cross coupling reaction.
Collapse
Affiliation(s)
- Sumanth Hegde
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore-560029, India
| | - Aatika Nizam
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore-560029, India
| | - Ajesh Vijayan
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore-560029, India
| | - Ramesh B. Dateer
- Centre for Nano and Material Sciences, Jain University, Bangalore, Karnataka 562112, India
| | - Suresh Babu Naidu Krishna
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban-4000, South Africa
- Department of Biomedical and Clinical Technology, Durban University of Technology, Durban-4000, South Africa
| |
Collapse
|
4
|
Palladium Nanoparticles Supported on Ce-MOF-801 as Highly Efficient and Stable Heterogeneous Catalysts for Suzuki-Miyaura Coupling Reactions. Catal Letters 2022. [DOI: 10.1007/s10562-022-04163-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Bugday N, Altin S, Yaşar S. Porous Carbon supported CoPd‐nanoparticles: High‐Performance Reduction Reaction of Nitrophenol. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Nesrin Bugday
- Faculty of Science and art, Department of Chemistry İnönü University Malatya Turkey
| | - Serdar Altin
- Faculty of Science and art, Department of Physics İnönü University Malatya Turkey
| | - Sedat Yaşar
- Faculty of Science and art, Department of Chemistry İnönü University Malatya Turkey
| |
Collapse
|
6
|
Wang CA, Zhao W, Li YW, Han Y, Zhang J, Li Q, Nie K, Chang J, Liu FS. Bulky Pd-PEPPSI-Embedded Conjugated Microporous Polymers-Catalyzed Suzuki-Miyaura Cross-Coupling of Aryl Chlorides and Arylboronic Acids. Polym Chem 2022. [DOI: 10.1039/d1py01616d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Through post-synthesis method, a type of bulky N-heterocyclic carbenes (NHCs) functionalized conjugated microporous polymers to supported the palladium-based molecular catalyst has been developed. The resulting heterogeneous catalyst Pd-PEPPSI-CMP, showing greater...
Collapse
|