1
|
Yang R, Xu S, Wang X, Xiao Y, Li J, Hu C. Selective Stereoretention of Carbohydrates upon C-C Cleavage Enabling D-Glyceric Acid Production with High Optical Purity over a Ag/γ-Al 2O 3 Catalyst. Angew Chem Int Ed Engl 2024; 63:e202403547. [PMID: 38485666 DOI: 10.1002/anie.202403547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Indexed: 04/06/2024]
Abstract
Chiral carboxylic acid production from renewable biomass by chemocatalysis is vitally important for reducing our carbon footprint, but remains underdeveloped. We herein establish a strategy that make use of a stereogenic center of biomass to achieve a rare example of D-glyceric acid production with the highest yield (86.8 %) reported to date as well as an excellent ee value (>99 %). Unlike traditional asymmetric catalysis, chiral catalysts/additives are not required. Ample experiments combined with quantum chemical calculations established the origins of the stereogenic center and catalyst performance. The chirality at C4 in D-xylose was proved to be retained and successfully delivered to C2 in D-glyceric acid during C-C cleavage. The remarkable cooperative-roles of Ag+ and Ag0 in the constructed Ag/γ-Al2O3 catalyst are disclosed as the crucial contributors. Ag+ was responsible for low-temperature activation of D-xylose, while Ag0 facilitated the generation of active O* from O2. Ag+ and active O* cooperatively promoted the precise cleavage of the C2-C3 bond, and more importantly O* allowed the immediate fast oxidization of the D-glyceraldehyde intermediate to stabilize D-glyceric acid, thereby inhibiting the side reaction that induced racemization. This strategy makes a significant breakthrough in overcoming the limitation of poor enantioselectivity in current chemocatalytic conversion of biomass.
Collapse
Affiliation(s)
- Ruofeng Yang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, No. 29 Wangjiang Road, Chengdu, Sichuan, 610064, PR China
| | - Shuguang Xu
- College of Chemical Engineering, Sichuan University No.24 South Section 1, Yihuan Road, Chengdu, Sichuan, 610065, PR China
| | - Xiaoyan Wang
- Analysis and Test Center, Sichuan University, No. 29 Wangjiang Road, Chengdu, Sichuan, 610064, PR China
| | - Yuan Xiao
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, No. 29 Wangjiang Road, Chengdu, Sichuan, 610064, PR China
| | - Jianmei Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, No. 29 Wangjiang Road, Chengdu, Sichuan, 610064, PR China
| | - Changwei Hu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, No. 29 Wangjiang Road, Chengdu, Sichuan, 610064, PR China
| |
Collapse
|
2
|
Gong Y, Fang S, Zheng Y, Guo H, Yang F. Tetra-cyanostilbene macrocycle: An effective “turn-on” fluorescence sensor for oxalic acid in aqueous media. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
3
|
Tian Q, Wang X, Zhang W, Liao S, Hu C, Li J. Low-Temperature Production of Glyceric Acid from Biomass-Based Sugar via the Cooperative Roles of MgO and NaBF 4. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Qing Tian
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan610064, PR China
| | - Xiaoyan Wang
- Analysis and Test Center, Sichuan University, Chengdu, Sichuan610064, PR China
| | - Wenyu Zhang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan610064, PR China
| | - Shengqi Liao
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan610064, PR China
| | - Changwei Hu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan610064, PR China
| | - Jianmei Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan610064, PR China
| |
Collapse
|
4
|
Ghigo G, Bonomo M, Antenucci A, Damin A, Dughera S. Ullmann homocoupling of arenediazonium salts in a deep eutectic solvent. Synthetic and mechanistic aspects. RSC Adv 2022; 12:26640-26647. [PMID: 36275154 PMCID: PMC9487193 DOI: 10.1039/d2ra05272e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/08/2022] [Indexed: 11/21/2022] Open
Abstract
A deep eutectic solvent (DES) based on glycerol and KF is successfully exploited as a solvent medium in Ullmann homocoupling of arenediazonium salts. The reactions were carried out in mild conditions and target products were obtained in fairly good yields. A computational study is presented aiming to understand the reaction mechanism and Raman spectroscopy is employed as an experimental tool to support it.
Collapse
Affiliation(s)
- Giovanni Ghigo
- Department of Chemistry, University of Turin Via Pietro Giuria 7 10125 Turin Italy
| | - Matteo Bonomo
- Department of Chemistry, University of Turin Via Pietro Giuria 7 10125 Turin Italy
- NIS Interdepartmental Centre and INSTM Reference Centre, University of Turin Via Gioacchino Quarello 15/a 10125 Turin Italy
| | - Achille Antenucci
- Department of Chemistry, University of Turin Via Pietro Giuria 7 10125 Turin Italy
| | - Alessandro Damin
- Department of Chemistry, University of Turin Via Pietro Giuria 7 10125 Turin Italy
- NIS Interdepartmental Centre and INSTM Reference Centre, University of Turin Via Gioacchino Quarello 15/a 10125 Turin Italy
| | - Stefano Dughera
- Department of Chemistry, University of Turin Via Pietro Giuria 7 10125 Turin Italy
| |
Collapse
|
5
|
Morales DM, Jambrec D, Kazakova MA, Braun M, Sikdar N, Koul A, Brix AC, Seisel S, Andronescu C, Schuhmann W. Electrocatalytic Conversion of Glycerol to Oxalate on Ni Oxide Nanoparticles-Modified Oxidized Multiwalled Carbon Nanotubes. ACS Catal 2022. [DOI: 10.1021/acscatal.1c04150] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Dulce M. Morales
- Analytical Chemistry − Center of Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Daliborka Jambrec
- Analytical Chemistry − Center of Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Mariya A. Kazakova
- Boreskov Institute of Catalysis, SB RAS, Lavrentieva 5, 630090 Novosibirsk, Russia
| | - Michael Braun
- Chemical Technology III, Faculty of Chemistry and CENIDE Center for Nanointegration, University of Duisburg-Essen, Carl-Benz-Straße 199, 47057 Duisburg, Germany
| | - Nivedita Sikdar
- Analytical Chemistry − Center of Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Adarsh Koul
- Analytical Chemistry − Center of Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Ann Cathrin Brix
- Analytical Chemistry − Center of Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Sabine Seisel
- Analytical Chemistry − Center of Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Corina Andronescu
- Chemical Technology III, Faculty of Chemistry and CENIDE Center for Nanointegration, University of Duisburg-Essen, Carl-Benz-Straße 199, 47057 Duisburg, Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry − Center of Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| |
Collapse
|
6
|
Antenucci A, Bonomo M, Ghigo G, Gontrani L, Barolo C, Dughera S. How do arenediazonium salts behave in deep eutectic solvents? A combined experimental and computational approach. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Chida T, Hiromori K, Shibasaki‐Kitakawa N, Mimura N, Yamaguchi A, Takahashi A. Efficient Conversion of Glycerol into High Value‐Added Chemicals by Partial Oxidation. J AM OIL CHEM SOC 2020. [DOI: 10.1002/aocs.12440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tsutomu Chida
- Department of Chemical Engineering Tohoku University Sendai 980‐8579 Japan
| | - Kousuke Hiromori
- Department of Chemical Engineering Tohoku University Sendai 980‐8579 Japan
| | | | - Naoki Mimura
- Research Institute for Chemical Process Technology National Institute of Advanced Industrial Science and Technology (AIST) Sendai 983‐8551 Japan
| | - Aritomo Yamaguchi
- Research Institute for Chemical Process Technology National Institute of Advanced Industrial Science and Technology (AIST) Sendai 983‐8551 Japan
| | - Atsushi Takahashi
- Department of Chemical Engineering Tohoku University Sendai 980‐8579 Japan
| |
Collapse
|