1
|
Chen X, Liu W, Zhao Y, He H, Ma J, Cui Z, Yuan X. Optimization of semi-continuous dry anaerobic digestion process and biogas yield of dry yellow corn straw: Based on "gradient anaerobic digestion reactor". BIORESOURCE TECHNOLOGY 2023; 389:129804. [PMID: 37805086 DOI: 10.1016/j.biortech.2023.129804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/09/2023]
Abstract
In China, the problem of low biogas yield of traditional biogas projects has become increasingly prominent. This study investigated the effects of different hydraulic retention times (HRTs) on the biogas production efficiency and microbial community under pilot conditions. The results show that the "Gradient anaerobic digestion reactor" can stably carry out semi-continuous dry anaerobic digestion and improve biogas yield. The highest volatile solids (VS) biogas yield (413.73 L/kg VS and 221.61 L CH4/kg VS) and VS degradation rate (48.41%) were observed at an HRT of 25 days. When the HRT was 15 days, the volumetric biogas yield was the highest (2.73 L/L/d, 1.43 L CH4/L/d), but the VS biogas yield and degradation rate were significantly decreased. Microbial analysis showed that HRT significantly affected microbial community. It provides basic data support for the development of a new anaerobic digestion process and the practical application of the straw biogas project in China.
Collapse
Affiliation(s)
- Xiaotian Chen
- College of Agronomy/Center of Biomass Engineering, China Agricultural University, Beijing 100193, China
| | - Wei Liu
- Beijing Yingherui Environmental Technology Co., LTD, Beijing 102412, China
| | - Yehua Zhao
- Beijing Yingherui Environmental Technology Co., LTD, Beijing 102412, China
| | - Huiban He
- College of Agronomy/Center of Biomass Engineering, China Agricultural University, Beijing 100193, China
| | - Jitao Ma
- Sanhe Yingsheng Bioenergy Technology Co., LTD, Sanhe 065200, China
| | - Zongjun Cui
- College of Agronomy/Center of Biomass Engineering, China Agricultural University, Beijing 100193, China
| | - Xufeng Yuan
- College of Agronomy/Center of Biomass Engineering, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Li J, Zeng K, Zhong D, Flamant G, Nzihou A, White CE, Yang H, Chen H. Algae Pyrolysis in Molten NaOH-Na 2CO 3 for Hydrogen Production. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6485-6493. [PMID: 37043626 DOI: 10.1021/acs.est.3c01325] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Biomass pyrolysis within the alkaline molten salt is attractive due to its ability to achieve high hydrogen yield under relatively mild conditions. However, poor contact between biomass, especially the biomass pellet, and hydroxide during the slow heating process, as well as low reaction temperatures, become key factors limiting the hydrogen production. To address these challenges, fast pyrolysis of the algae pellet in molten NaOH-Na2CO3 was conducted at 550, 650, and 750 °C. Algae were chosen as feedstock for their high photosynthetic efficiency and growth rate, and the concept of coupling molten salt with concentrated solar energy was proposed to address the issue of high energy consumption at high temperatures. At 750 °C, the pollutant gases containing Cl and S were completely removed, and the HCN removal rate reached 44.92%. During the continuous pyrolysis process, after a slight increase, the hydrogen yield remained stable at 71.48 mmol/g-algae and constituted 86.10% of the gas products, and a minimum theoretical hydrogen production efficiency of algae can reach 84.86%. Most importantly, the evolution of physicochemical properties of molten NaOH-Na2CO3 was revealed for the first time. Combined with the conversion characteristics of feedstock and gas products, this study provides practical guidance for large-scale application of molten salt including feedstock, operation parameters, and post-treatment process.
Collapse
Affiliation(s)
- Jun Li
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, PR China
| | - Kuo Zeng
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, PR China
| | - Dian Zhong
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, PR China
| | - Gilles Flamant
- Processes, Materials and Solar Energy Laboratory, PROMES-CNRS, 7 rue du Four Solaire, 66120 Odeillo Font Romeu, France
| | - Ange Nzihou
- Université de Toulouse, IMT Mines Albi, RAPSODEE CNRS UMR 5302, Campus Jarlard, F.81013 Albi, Cedex 09, France
- Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
| | - Claire E White
- Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Haiping Yang
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, PR China
| | - Hanping Chen
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, PR China
| |
Collapse
|
3
|
Lian T, Zhang W, Cao Q, Wang S, Dong H, Yin F. Improving production of lactic acid and volatile fatty acids from dairy cattle manure and corn straw silage: Effects of mixing ratios and temperature. BIORESOURCE TECHNOLOGY 2022; 359:127449. [PMID: 35697263 DOI: 10.1016/j.biortech.2022.127449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Anaerobic co-fermentation (AcoF) of dairy cattle manure (DCM) and corn straw silage (CSS) for producing lactic acid (LA) and volatile fatty acids (VFAs) was investigated. Batch experiments were conducted at seven different DCM/CSS ratios and at mesophilic and thermophilic temperatures. Results indicated that the highest concentration of LA was 17.50 ± 0.70 g/L at DCM:CSS ratio of 1:3 and thermophilic temperature, while VFAs was 18.23 ± 2.45 g/L at mono-CSS fermentation and mesophilic temperature. High solubilization of thermophilic conditions contributed to LA accumulation in AcoF process. Presence of the CSS increased the relative abundance of Lactobacillus for LA production at thermophilic. Meanwhile, the abundance of Bifidobacterium was increased when CSS was added at mesophilic, which could conduce to VFAs production. This study provides a new route for enhancing the biotransformation of DCM and CSS into short-chain fatty acids, potentially bringing economic benefits to agricultural waste treatment.
Collapse
Affiliation(s)
- Tianjing Lian
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Wanqin Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Qitao Cao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shunli Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Hongmin Dong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Fubin Yin
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| |
Collapse
|
4
|
On-Line Thermally Induced Evolved Gas Analysis: An Update-Part 1: EGA-MS. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113518. [PMID: 35684458 PMCID: PMC9182359 DOI: 10.3390/molecules27113518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 11/16/2022]
Abstract
Advances in on-line thermally induced evolved gas analysis (OLTI-EGA) have been systematically reported by our group to update their applications in several different fields and to provide useful starting references. The importance of an accurate interpretation of the thermally-induced reaction mechanism which involves the formation of gaseous species is necessary to obtain the characterization of the evolved products. In this review, applications of Evolved Gas Analysis (EGA) performed by on-line coupling heating devices to mass spectrometry (EGA-MS), are reported. Reported references clearly demonstrate that the characterization of the nature of volatile products released by a substance subjected to a controlled temperature program allows us to prove a supposed reaction or composition, either under isothermal or under heating conditions. Selected 2019, 2020, and 2021 references are collected and briefly described in this review.
Collapse
|