1
|
Mirzaghavami PS, Khoei S, Khoee S, Shirvalilou S. Folic acid-conjugated magnetic triblock copolymer nanoparticles for dual targeted delivery of 5-fluorouracil to colon cancer cells. Cancer Nanotechnol 2022. [DOI: 10.1186/s12645-022-00120-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Abstract
Background
In the current study, folic acid-conjugated PEG-PCL-PEG triblock copolymer were synthesized and loaded with 5-fluorouracil and magnetite nanoparticles (5-FU-SPION-PEG-PCL-PEG-FA) for targeted delivery of drug to HT29 human colon cancer cells and CT26 mouse colon cancer model. The nanoparticles were synthesized and characterized by nuclear magnetic resonance spectroscopy (NMR) and transmission electron microscopy (TEM). The cellular uptake of nanoparticles was assessed in vitro (on HUVEC and HT29) and in vivo (on CT26 colon tumor tissues). The cytotoxic effect of nanoparticles was assessed on human colon cell lines (HT29, Caco-2, HTC116, and SW480) and normal HUVEC cells. In addition, antitumor effects of nanoparticles were investigated based on tumor volume, survival time and protein expression of Bax and Bcl-2 on CT26 tumor-bearing BALB/c mice.
Results
Characterization of nanoparticles showed 5-FU-SPION-PEG-PCL-PEG-FA (5-FU-NPs-FA) nanoparticles had spherical shape with hydrodynamic diameter of 85 nm. The drug-release profile exhibited sustained pH-responsive release with cumulative release reaching approximately 23% after 24 h. Cellular uptake studies revealed that HT29 cancer cells absorb higher amount of 5-FU-NPs-FA as compared to HUVEC normal cells (P < 0.05). In addition, 5-FU-NPs-FA was found to be more antitumor efficient in comparison to free 5-FU based on Bax/Bcl2 ratio, survival rate of tumoral mouse and inhibitory tumor volume (P < 0.05).
Conclusions
The results suggested that 5-FU-NPs-FA could be considered as promising sustained drug delivery platform for in vitro and in vivo conditions, which may provide selective treatment of tumor cancer cells.
Graphical Abstarct
Collapse
|
2
|
Maikawa CL, Sevit A, Lin B, Wallstrom RJ, Mann JL, Yu AC, Waymouth RM, Appel EA. Block copolymer composition drives function of self-assembled nanoparticles for delivery of small-molecule cargo. JOURNAL OF POLYMER SCIENCE. PART A, POLYMER CHEMISTRY 2019; 57:1322-1332. [PMID: 31244507 PMCID: PMC6582505 DOI: 10.1002/pola.29393] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 04/16/2019] [Indexed: 12/20/2022]
Abstract
Nanoparticles are useful for the delivery of small molecule therapeutics, increasing their solubility, in vivo residence time, and stability. Here, we used organocatalytic ring opening polymerization to produce amphiphilic block copolymers for the formation of nanoparticle drug carriers with enhanced stability, cargo encapsulation, and sustained delivery. These polymers comprised blocks of poly(ethylene glycol) (PEG), poly(valerolactone) (PVL), and poly(lactide) (PLA). Four particle chemistries were examined: (a) PEG-PLA, (b) PEG-PVL, (c) a physical mixture of PEG-PLA and PEG-PVL, and (d) PEG-PVL-PLA tri-block copolymers. Nanoparticle stability was assessed at room temperature (20 °C; pH = 7), physiological temperature (37 °C; pH = 7), in acidic media (37 °C; pH = 2), and with a digestive enzyme (lipase; 37 °C; pH = 7.4). PVL-based nanoparticles demonstrated the highest level of stability at room temperature, 37 °C and acidic conditions, but were rapidly degraded by lipase. Moreover, PVL-based nanoparticles demonstrated good cargo encapsulation, but rapid release. In contrast, PLA-based nanoparticles demonstrated poor stability and encapsulation, but sustained release. The PEG-PVL-PLA nanoparticles exhibited the best combination of stability, encapsulation, and release properties. Our results demonstrate the ability to tune nanoparticle properties by modifying the polymeric architecture and composition. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1322-1332.
Collapse
Affiliation(s)
| | - Alex Sevit
- Department of BioengineeringStanford UniversityStanfordCalifornia 94305
| | - Binhong Lin
- Department of ChemistryStanford UniversityStanfordCalifornia 94305
| | - Rachel J. Wallstrom
- Department of Materials Science & EngineeringStanford UniversityStanfordCalifornia 94305
| | - Joseph L. Mann
- Department of Materials Science & EngineeringStanford UniversityStanfordCalifornia 94305
| | - Anthony C. Yu
- Department of Materials Science & EngineeringStanford UniversityStanfordCalifornia 94305
| | | | - Eric A. Appel
- Department of Materials Science & EngineeringStanford UniversityStanfordCalifornia 94305
| |
Collapse
|
3
|
Wang W, Naolou T, Ma N, Deng Z, Xu X, Mansfeld U, Wischke C, Gossen M, Neffe AT, Lendlein A. Polydepsipeptide Block-Stabilized Polyplexes for Efficient Transfection of Primary Human Cells. Biomacromolecules 2017; 18:3819-3833. [PMID: 28954190 DOI: 10.1021/acs.biomac.7b01034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The rational design of a polyplex gene carrier aims to balance maximal effectiveness of nucleic acid transfection into cells with minimal adverse effects. Depsipeptide blocks with an Mn ∼ 5 kDa exhibiting strong physical interactions were conjugated with PEI moieties (2.5 or 10 kDa) to di- and triblock copolymers. Upon nanoparticle formation and complexation with DNA, the resulting polyplexes (sizes typically 60-150 nm) showed remarkable stability compared to PEI-only or lipoplex and facilitated efficient gene delivery. Intracellular trafficking was visualized by observing fluorescence-labeled pDNA and highlighted the effective cytoplasmic uptake of polyplexes and release of DNA to the perinuclear space. Specifically, a triblock copolymer with a middle depsipeptide block and two 10 kDa PEI swallowtail structures mediated the highest levels of transgenic VEGF secretion in mesenchymal stem cells with low cytotoxicity. These nanocarriers form the basis for a delivery platform technology, especially for gene transfer to primary human cells.
Collapse
Affiliation(s)
- Weiwei Wang
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies , Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany
| | - Toufik Naolou
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies , Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany
| | - Nan Ma
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies , Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin , 14195 Berlin, Germany
| | - Zijun Deng
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies , Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin , 14195 Berlin, Germany
| | - Xun Xu
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies , Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin , 14195 Berlin, Germany
| | - Ulrich Mansfeld
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies , Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany
| | - Christian Wischke
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies , Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany
| | - Manfred Gossen
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies , Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany
| | - Axel T Neffe
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies , Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany.,Institute of Chemistry, University of Potsdam , 14476 Potsdam, Germany
| | - Andreas Lendlein
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies , Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin , 14195 Berlin, Germany.,Institute of Chemistry, University of Potsdam , 14476 Potsdam, Germany
| |
Collapse
|
4
|
Chen G, Shi X, Wang B, Xie R, Guo LW, Gong S, Kent KC. Unimolecular Micelle-Based Hybrid System for Perivascular Drug Delivery Produces Long-Term Efficacy for Neointima Attenuation in Rats. Biomacromolecules 2017; 18:2205-2213. [PMID: 28613846 DOI: 10.1021/acs.biomac.7b00617] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
At present, there are no clinical options for preventing neointima-caused (re)stenosis after open surgery such as bypass surgery for treating flow-limiting vascular disease. Perivascular drug delivery is a promising strategy, but in translational research, it remains a major challenge to achieve long-term (e.g., > 3 months) anti(re)stenotic efficacy. In this study, we engineered a unique drug delivery system consisting of durable unimolecular micelles, formed by single multiarm star amphiphilic block copolymers with only covalent bonds, and a thermosensitive hydrogel formed by a poly(lactide-co-glycolide)-poly(ethylene glycol)-poly(lactide-co-glycolide) triblock copolymer (abbreviated as triblock gel) that is stable for about 4 weeks in vitro. The drug-containing unimolecular micelles (UMs) suspended in Triblock gel were able to sustain rapamycin release for over 4 months. Remarkably, even 3 months after perivascular application of the rapamycin-loaded micelles in Triblock gel in the rat model, the intimal/medial area ratio (a restenosis measure) was still 80% inhibited compared to the control treated with empty micelle/gel (no drug). This could not be achieved by applying rapamycin in Triblock gel alone, which reduced the intimal/medial ratio only by 27%. In summary, we created a new UM/Triblock gel hybrid system for perivascular drug delivery, which produced a rare feat of 3-month restenosis inhibition in animal tests. This system exhibits a real potential for further translation into an anti(re)stenotic application with open surgery.
Collapse
Affiliation(s)
- Guojun Chen
- Department of Materials Science and Engineering, and Wisconsin Institute for Discovery and ‡Department of Biomedical Engineering and Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53715, United States.,Department of Surgery, 5151 Wisconsin Institutes for Medical Research and ⊥McPherson Eye Research Institute, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States.,Department of Surgery, Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute and #Department of Surgery, College of Medicine, The Ohio State University , Columbus, Ohio 43210, United States
| | - Xudong Shi
- Department of Materials Science and Engineering, and Wisconsin Institute for Discovery and ‡Department of Biomedical Engineering and Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53715, United States.,Department of Surgery, 5151 Wisconsin Institutes for Medical Research and ⊥McPherson Eye Research Institute, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States.,Department of Surgery, Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute and #Department of Surgery, College of Medicine, The Ohio State University , Columbus, Ohio 43210, United States
| | - Bowen Wang
- Department of Materials Science and Engineering, and Wisconsin Institute for Discovery and ‡Department of Biomedical Engineering and Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53715, United States.,Department of Surgery, 5151 Wisconsin Institutes for Medical Research and ⊥McPherson Eye Research Institute, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States.,Department of Surgery, Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute and #Department of Surgery, College of Medicine, The Ohio State University , Columbus, Ohio 43210, United States
| | - Ruosen Xie
- Department of Materials Science and Engineering, and Wisconsin Institute for Discovery and ‡Department of Biomedical Engineering and Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53715, United States.,Department of Surgery, 5151 Wisconsin Institutes for Medical Research and ⊥McPherson Eye Research Institute, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States.,Department of Surgery, Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute and #Department of Surgery, College of Medicine, The Ohio State University , Columbus, Ohio 43210, United States
| | - Lian-Wang Guo
- Department of Materials Science and Engineering, and Wisconsin Institute for Discovery and ‡Department of Biomedical Engineering and Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53715, United States.,Department of Surgery, 5151 Wisconsin Institutes for Medical Research and ⊥McPherson Eye Research Institute, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States.,Department of Surgery, Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute and #Department of Surgery, College of Medicine, The Ohio State University , Columbus, Ohio 43210, United States
| | - Shaoqin Gong
- Department of Materials Science and Engineering, and Wisconsin Institute for Discovery and ‡Department of Biomedical Engineering and Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53715, United States.,Department of Surgery, 5151 Wisconsin Institutes for Medical Research and ⊥McPherson Eye Research Institute, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States.,Department of Surgery, Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute and #Department of Surgery, College of Medicine, The Ohio State University , Columbus, Ohio 43210, United States
| | - K Craig Kent
- Department of Materials Science and Engineering, and Wisconsin Institute for Discovery and ‡Department of Biomedical Engineering and Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53715, United States.,Department of Surgery, 5151 Wisconsin Institutes for Medical Research and ⊥McPherson Eye Research Institute, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States.,Department of Surgery, Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute and #Department of Surgery, College of Medicine, The Ohio State University , Columbus, Ohio 43210, United States
| |
Collapse
|
6
|
Evaluation of triblock copolymeric micelles of δ- valerolactone and poly (ethylene glycol) as a competent vector for doxorubicin delivery against cancer. J Nanobiotechnology 2011; 9:42. [PMID: 21943300 PMCID: PMC3213063 DOI: 10.1186/1477-3155-9-42] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 09/25/2011] [Indexed: 12/02/2022] Open
Abstract
Background Specific properties of amphiphilic copolymeric micelles like small size, stability, biodegradability and prolonged biodistribution have projected them as promising vectors for drug delivery. To evaluate the potential of δ-valerolactone based micelles as carriers for drug delivery, a novel triblock amphiphilic copolymer poly(δ-valerolactone)/poly(ethylene glycol)/poly(δ-valerolactone) (VEV) was synthesized and characterized using IR, NMR, GPC, DTA and TGA. To evaluate VEV as a carrier for drug delivery, doxorubicin (DOX) entrapped VEV micelles (VEVDMs) were prepared and analyzed for in vitro antitumor activity. Results VEV copolymer was successfully synthesized by ring opening polymerization and the stable core shell structure of VEV micelles with a low critical micelle concentration was confirmed by proton NMR and fluorescence based method. Doxorubicin entrapped micelles (VEVDMs) prepared using a modified single emulsion method were obtained with a mean diameter of 90 nm and high encapsulation efficiency showing a pH dependent sustained doxorubicin release. Biological evaluation in breast adenocarcinoma (MCF7) and glioblastoma (U87MG) cells by flow cytometry showed 2-3 folds increase in cellular uptake of VEVDMs than free DOX. Block copolymer micelles without DOX were non cytotoxic in both the cell lines. As evaluated by the IC50 values VEVDMs induced 77.8, 71.2, 81.2% more cytotoxicity in MCF7 cells and 40.8, 72.6, 76% more cytotoxicity in U87MG cells than pristine DOX after 24, 48, 72 h treatment, respectively. Moreover, VEVDMs induced enhanced apoptosis than free DOX as indicated by higher shift in Annexin V-FITC fluorescence and better intensity of cleaved PARP. Even though, further studies are required to prove the efficacy of this formulation in vivo the comparable G2/M phase arrest induced by VEVDMs at half the concentration of free DOX confirmed the better antitumor efficacy of VEVDMs in vitro. Conclusions Our studies clearly indicate that VEVDMs possess great therapeutic potential for long-term tumor suppression. Furthermore, our results launch VEV as a promising nanocarrier for an effective controlled drug delivery in cancer chemotherapy.
Collapse
|