1
|
Fard SA, Amini-Fazl MS, Zarei M. Synthesis and optimization of biodegradable porous superabsorbent hydrogels based on gelatin-methacrylic acid and its application for phenazopyridine removal from pharmaceutical waste. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03132-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
2
|
Li A, Liu J, Qin Z, Wang L, Li L, Tang K, Pei Y. Black wattle tannin‐immobilized mesostructured collagen as a promising adsorbent for cationic organic dyes (methylene blue) removal in batch and continuous fixed‐bed systems. J Appl Polym Sci 2022. [DOI: 10.1002/app.52452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Aofei Li
- School of Material Science and Engineering Zhengzhou University Zhengzhou China
| | - Jie Liu
- School of Material Science and Engineering Zhengzhou University Zhengzhou China
| | - Ziwei Qin
- School of Material Science and Engineering Zhengzhou University Zhengzhou China
| | - Lu Wang
- School of Material Science and Engineering Zhengzhou University Zhengzhou China
| | - Lu Li
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education Shaanxi University of Science and Technology Xi'an China
| | - Keyong Tang
- School of Material Science and Engineering Zhengzhou University Zhengzhou China
| | - Ying Pei
- School of Material Science and Engineering Zhengzhou University Zhengzhou China
| |
Collapse
|
3
|
An insight into Synthetic, Physiological aspect of Superabsorbent Hydrogels based on Carbohydrate type polymers for various Applications: A Review. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
4
|
Hydrogels produced from natural polymers: a review on its use and employment in water treatment. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1007/s43153-022-00224-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
5
|
Choudhury S, Ray SK. Synthesis, characterization, and adsorption properties of collagen and attapulgite‐filled copolymer biocomposites: Batch and column studies. POLYM ENG SCI 2021. [DOI: 10.1002/pen.25735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Swastika Choudhury
- Department of Polymer Science and Technology University of Calcutta Kolkata India
| | - Samit Kumar Ray
- Department of Polymer Science and Technology University of Calcutta Kolkata India
| |
Collapse
|
6
|
Surface Modification of Graphene Oxide with Crosslinked Polymethacrylamide via RAFT Polymerization Strategy: Effective Removal of Heavy Metals from Aqueous Solutions. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-01918-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
7
|
Khademian E, Salehi E, Sanaeepur H, Galiano F, Figoli A. A systematic review on carbohydrate biopolymers for adsorptive remediation of copper ions from aqueous environments-part A: Classification and modification strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:139829. [PMID: 32526420 DOI: 10.1016/j.scitotenv.2020.139829] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Copper is one of the most toxic heavy metals which must be eliminated from aqueous environments, according to the environmental standards. Carbohydrate biopolymers are promising candidates for synthesizing copper-adsorbent composites. It is due to unique properties such as having potential adsorptive functional sites, availability, biocompatibility and biodegradability, formability, blending capacity, and reusability. Different types of copper-adsorbent carbohydrate biopolymers like chitosan and cellulose with particular focus on the synthesizing and modification approaches have been tackled in this review. Composites, functionality and morphological aspects of the biopolymer adsorbents have also been surveyed. Further progress in the fabrication and application of biopolymer adsorbents would be achievable with special attention to some critical challenges such as the process economy, copolymer and/or (nano) additive selection, and the physicochemical stability of the biopolymer composites in aqueous media.
Collapse
Affiliation(s)
- Einallah Khademian
- Faculty of Petrochemical Engineering, Amirkabir University of Technology, Mahshahr 6351-7-13178, Iran
| | - Ehsan Salehi
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak 38156-8-8349, Iran.
| | - Hamidreza Sanaeepur
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak 38156-8-8349, Iran
| | - Francesco Galiano
- Institute on Membrane Technology (CNR-ITM), Via P. Bucci 17/c, 87036 Rende, CS, Italy
| | - Alberto Figoli
- Institute on Membrane Technology (CNR-ITM), Via P. Bucci 17/c, 87036 Rende, CS, Italy
| |
Collapse
|
8
|
Using a Taguchi DOE to investigate factors and interactions affecting germination in Miscanthus sinensis. Sci Rep 2020; 10:1602. [PMID: 32005862 PMCID: PMC6994594 DOI: 10.1038/s41598-020-58322-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 12/20/2019] [Indexed: 11/17/2022] Open
Abstract
The Miscanthus genus of perennial grasses is grown for bioenergy and biorenewable feedstocks. Most Miscanthus crop is M × giganteus which is rhizome propagated and therefore difficult to multiply at large scale. Seed-based propagation of new hybrids is being developed, but Miscanthus is difficult to establish from seed especially in the field. Miscanthus is often grown on marginal land adding to the challenge of successfully establishing the crop. Improved understanding of the limits and biology of germination in Miscanthus species is needed. Seed germination is affected by physical and chemical factors that impact germination differently depending on level of exposure. In this investigation of Miscanthus germination, four hormones plus water stress were investigated and the range over which these factors affect germination was determined. An efficient Taguchi experimental design was used to assess the five factors in combination with the effects of light and seed priming. This determined an example of a set of optimum conditions for Miscanthus germination and demonstrated how this could change based on fixing one condition. The experiment showed how environmental stress impacted germination and how treatments such as gibberellic acid could be used to mitigate stress.
Collapse
|
9
|
Ling S, Chen W, Fan Y, Zheng K, Jin K, Yu H, Buehler MJ, Kaplan DL. Biopolymer nanofibrils: structure, modeling, preparation, and applications. Prog Polym Sci 2018; 85:1-56. [PMID: 31915410 PMCID: PMC6948189 DOI: 10.1016/j.progpolymsci.2018.06.004] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biopolymer nanofibrils exhibit exceptional mechanical properties with a unique combination of strength and toughness, while also presenting biological functions that interact with the surrounding environment. These features of biopolymer nanofibrils profit from their hierarchical structures that spun angstrom to hundreds of nanometer scales. To maintain these unique structural features and to directly utilize these natural supramolecular assemblies, a variety of new methods have been developed to produce biopolymer nanofibrils. In particular, cellulose nanofibrils (CNFs), chitin nanofibrils (ChNFs), silk nanofibrils (SNFs) and collagen nanofibrils (CoNFs), as the four most abundant biopolymer nanofibrils on earth, have been the focus of research in recent years due to their renewable features, wide availability, low-cost, biocompatibility, and biodegradability. A series of top-down and bottom-up strategies have been accessed to exfoliate and regenerate these nanofibrils for versatile advanced applications. In this review, we first summarize the structures of biopolymer nanofibrils in nature and outline their related computational models with the aim of disclosing fundamental structure-property relationships in biological materials. Then, we discuss the underlying methods used for the preparation of CNFs, ChNFs, SNF and CoNFs, and discuss emerging applications for these biopolymer nanofibrils.
Collapse
Affiliation(s)
- Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Wenshuai Chen
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Yimin Fan
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Ke Zheng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Kai Jin
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Haipeng Yu
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Markus J. Buehler
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
10
|
Van Tran V, Park D, Lee YC. Hydrogel applications for adsorption of contaminants in water and wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:24569-24599. [PMID: 30008169 DOI: 10.1007/s11356-018-2605-y] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 06/18/2018] [Indexed: 05/10/2023]
Abstract
During the last decade, hydrogels have been used as potential adsorbents for removal of contaminants from aqueous solution. To improve the adsorption efficiency, there are numerous different particles that can be chosen to encapsulate into hydrogels and each particle has their respective advantages. Depending on the type of pollutants and approaching method, the particles will be used to prepare hydrogels. The hydrogels commonly applied in water/wastewater treatment was mainly classified into three classes according to their shape included hydrogel beads, hydrogel films, and hydrogel nanocomposites. In review of many recently research papers, we take a closer look at hydrogels and their applications for removal of contaminants, such as heavy metal ion, dyes, and radionuclides from water/wastewater in order to elucidate the reactions between contaminants and particles and potential for recycling and regeneration of the post-treatment hydrogels. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Vinh Van Tran
- Department of BioNano Technology, Gachon University, 1342 Seongnamdaero, Seongnam-si, 13120, Gyeonggi-do, Republic of Korea
| | - Duckshin Park
- Korea Railroad Research Institute (KRRI), 176 Cheoldobakmulkwan-ro, Uiwang-si, 16105, Gyeonggi-do, Republic of Korea
| | - Young-Chul Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnamdaero, Seongnam-si, 13120, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
11
|
Noppakundilograt S, Choopromkaw S, Kiatkamjornwong S. Hydrolyzed collagen-grafted-poly[(acrylic acid)-co
-(methacrylic acid)] hydrogel for drug delivery. J Appl Polym Sci 2017. [DOI: 10.1002/app.45654] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Supaporn Noppakundilograt
- Department of Imaging and Printing Technology; Faculty of Science, Chulalongkirn University; Bangkok Thailand
| | - Sopinya Choopromkaw
- Program of Petrochemistry and Polymer Science, Faculty of Science; Chulalongkorn University; Bangkok Thailand
| | - Suda Kiatkamjornwong
- Faculty of Science; Chulalongkorn University; Bangkok Thailand
- The Academy of Science, The Royal Society of Thailand, Sanam Sueapa; Dusit Bangkok 10300 Thailand
| |
Collapse
|
12
|
Ni N, Zhang D, Dumont MJ. Synthesis and characterization of zein-based superabsorbent hydrogels and their potential as heavy metal ion chelators. Polym Bull (Berl) 2017. [DOI: 10.1007/s00289-017-2017-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Demeter M, Virgolici M, Vancea C, Scarisoreanu A, Kaya MGA, Meltzer V. Network structure studies on γ–irradiated collagen–PVP superabsorbent hydrogels. Radiat Phys Chem Oxf Engl 1993 2017. [DOI: 10.1016/j.radphyschem.2016.09.029] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
|
15
|
Cho SH, Tathireddy P, Rieth L, Magda J. Effect of chemical composition on the response of zwitterionic glucose sensitive hydrogels studied by design of experiments. J Appl Polym Sci 2014. [DOI: 10.1002/app.40667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Seung-Hei Cho
- Department of Chemical Engineering; University of Utah; Salt Lake City Utah 84112
| | - Prashant Tathireddy
- Department of Electrical and Computer Engineering; University of Utah; Salt Lake City Utah
| | - Loren Rieth
- Department of Electrical and Computer Engineering; University of Utah; Salt Lake City Utah
| | - Jules Magda
- Department of Chemical Engineering; University of Utah; Salt Lake City Utah 84112
| |
Collapse
|
16
|
Souda P, Sreejith L. Poly (Acrylate -Acrylic acid-co-Maleic acid) hydrogel: A Cost Effective and Efficient Method for Removal of Metal Ions from Water. SEP SCI TECHNOL 2013. [DOI: 10.1080/01496395.2013.809106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Zhang B, Cui Y, Yin G, Li X, You Y. Synthesis and Swelling Properties of Hydrolyzed Cottonseed Protein Composite Superabsorbent Hydrogel. INT J POLYM MATER PO 2010. [DOI: 10.1080/00914031003760709] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Zohuriaan-Mehr MJ, Pourjavadi A, Salimi H, Kurdtabar M. Protein- and homo poly(amino acid)-based hydrogels with super-swelling properties. POLYM ADVAN TECHNOL 2009. [DOI: 10.1002/pat.1395] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Pourjavadi A, Salimi H, Kurdtabar M. Hydrolyzed collagen-based hydrogel with salt and pH-responsiveness properties. J Appl Polym Sci 2007. [DOI: 10.1002/app.26682] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|