1
|
Mirnezhad S, Sadeghi-Kiakhani M, Hashemi E. Wool dyeing using Ziziphus bark extract as a natural dye: studies on the dyeing, antibacterial, and antioxidant characteristics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:51504-51517. [PMID: 36811781 DOI: 10.1007/s11356-023-25682-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Considering the growing importance of natural colorants and sustainable products, the research on application of natural dyes has been focused on new color resources, identification, and standardization of natural dyes. Hence, the extraction of natural colorants available in Ziziphus bark was performed by ultrasound technique and its application on the wool yarn to produce the antioxidant and antibacterial fibers. The optimal conditions for the extraction process were as follows: ethanol/water (1/2 v/v) as solvent, concentration of Ziziphus dye 14 g/L, pH 9, temperature 50 °C, time 30 min, and L.R ratio 50:1. Moreover, the effect of important variables for application of Ziziphus dye on the wool yarn was investigated and optimized temperature 100 °C, concentration of Ziziphus dye 50% o.w.f., time for dyeing 60 min and pH 8, and L.R 30:1. The reduction values of Gram-negative and Gram-positive bacteria on dyed samples at optimized condition were 85% and 76%, respectively. Moreover, the antioxidant property of dyed sample was 78%. The color variations on the wool yarn were produced with diverse metal mordants, and color fastness properties were measured. Ziziphus dye not only can be used as an origin for a natural dye, but also provided the antibacterial and antioxidant agent on the wool yarn, which can be a step towards the fabrication of green products.
Collapse
Affiliation(s)
- Somayeh Mirnezhad
- Faculty Art and Architecture, Sistan and Baluchestan University, Zahedan, Sistan and Baluchestan, Iran
| | - Mousa Sadeghi-Kiakhani
- Department of Organic Colorants, Institute for Color Science and Technology, Tehran, Iran.
| | - Elaheh Hashemi
- Department of Chemistry, Faculty of Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| |
Collapse
|
2
|
Du H, Hao K, Wang Q, Huang X, Wu J, Li H, Huang C, Xu L, Yin L, Lin J. Studies on crystal structures, optical, dyeing and biological properties of protoberberine alkaloids and their supramolecular salts. Bioorg Chem 2022; 130:106256. [DOI: 10.1016/j.bioorg.2022.106256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
|
3
|
Du H, Xu L, Yue M, Xu F, Wang Y. Studies on crystal structures, optical, solubility and dyeing properties of two new crystalline dye salts based on berberine with aromatic carboxylic acid. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Wang X, Liu P, Wu Q, Zheng Z, Xie M, Chen G, Yu J, Wang X, Li G, Kaplan D. Sustainable Antibacterial and Anti-Inflammatory Silk Suture with Surface Modification of Combined-Therapy Drugs for Surgical Site Infection. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11177-11191. [PMID: 35192338 DOI: 10.1021/acsami.2c00106] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Silk sutures with antibacterial and anti-inflammatory functions were developed for sustained dual-drug delivery to prevent surgical site infections (SSIs). The silk sutures were prepared with core-shell structures braided from degummed silk filaments and then coated with a silk fibroin (SF) layer loaded with berberine (BB) and artemisinin (ART). Both the rapid release of drugs to prevent initial biofilm formation and the following sustained release to maintain effective concentrations for more than 42 days were demonstrated. In vitro assays using human fibroblasts (Hs 865.Sk) demonstrated cell proliferation on the materials, and hemolysis was 2.4 ± 0.8%, lower than that required by ISO 10993-4 standard. The sutures inhibited platelet adhesion and promoted collagen deposition and blood vessel formation. In vivo assessments using Sprague-Dawley (SD) rats indicated that the coating reduced the expression of pro-inflammatory cytokines interleukin-10 (IL-10) and tumor necrosis factor-α (TNF-α), shortening the inflammatory period and promoting angiogenesis. The results demonstrated that these new sutures exhibited stable structures, favorable biocompatibility, and sustainable antibacterial and anti-inflammatory functions with potential for surgical applications.
Collapse
Affiliation(s)
- Xuchen Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Peixin Liu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Orthopedic Institute, Soochow University, Suzhou 215006, China
| | - Qinting Wu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Zhaozhu Zheng
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Maobin Xie
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Guoqiang Chen
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Jia Yu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Orthopedic Institute, Soochow University, Suzhou 215006, China
| | - Xiaoqin Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Gang Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - David Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| |
Collapse
|
5
|
Wu Q, He C, Wang X, Zhang S, Zhang L, Xie R, Li Y, Wang X, Han Z, Zheng Z, Li G. Sustainable Antibacterial Surgical Suture Using a Facile Scalable Silk-Fibroin-Based Berberine Loading System. ACS Biomater Sci Eng 2021; 7:2845-2857. [PMID: 34043327 DOI: 10.1021/acsbiomaterials.1c00481] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Medical sutures with sustainable antibacterial properties can effectively inhibit pathogens, thus avoiding the occurrence of surgical site infection and reducing the recurrence of patients resulting in postoperative death. This paper describes a facile scalable antibacterial surgical suture with sustainable antibacterial function and fair mechanical and biocompatible properties using a simple, efficient, and eco-friendly method. Silk filaments were braided into a core-shell structure using a braiding machine, and then silk fibroin (SF) films loaded with different percentages of berberine (BB) were coated onto the surface of the suture. The drug-loaded sutures performed a slow drug-release profile of more than 7 days. Retention of the knot-pull tensile strength of all groups was above 87% during in vitro degradation within 42 days. The sutures had no toxicity to the cells' in vitro cytotoxicity. The results of the in vivo biocompatibility test showed mild inflammation and clear signs of supporting angiogenesis in the implantation site of the rats. This work provides a new route for achieving a BB-loaded and high-performance antibacterial suture, which is of great potential in applications for surgical operations.
Collapse
Affiliation(s)
- Qinting Wu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Chaoheng He
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Xuchen Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Shujun Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Li Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Ruijuan Xie
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Yi Li
- The School of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Xiaoqin Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Zhifen Han
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhaozhu Zheng
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Gang Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| |
Collapse
|
6
|
Antibacterial modification of nylon-6 nanofibers: structure, properties and antibacterial activity. JOURNAL OF POLYMER RESEARCH 2017. [DOI: 10.1007/s10965-017-1365-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
|
8
|
El-Ola SMA. Recent Developments in Finishing of Synthetic Fibers for Medical Applications. Des Monomers Polym 2012. [DOI: 10.1163/156855508x363816] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- S. M. Abo El-Ola
- a Textile Research Division, National Research Center, El Behoos Street, Dokki, Cairo, Egypt
| |
Collapse
|
9
|
|
10
|
Chang S, Kang B, Dai Y, Chen D. Synthesis of antimicrobial silver nanoparticles on silk fibers via γ-radiation. J Appl Polym Sci 2009. [DOI: 10.1002/app.29716] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|