1
|
García L, Braccini S, Pagliarini E, Del Gronchio V, Di Gioia D, Peniche H, Peniche C, Puppi D. Ionically-crosslinked carboxymethyl chitosan scaffolds by additive manufacturing for antimicrobial wound dressing applications. Carbohydr Polym 2024; 346:122640. [PMID: 39245504 DOI: 10.1016/j.carbpol.2024.122640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/02/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024]
Abstract
Chitosan chemical functionalization is a powerful tool to provide novel materials for additive manufacturing strategies. The main aim of this study was the employment of computer-aided wet spinning (CAWS) for the first time to design and fabricate carboxymethyl chitosan (CMCS) scaffolds. For this purpose, the synthesis of a chitosan derivative with a high degree of O-substitution (1.07) and water soluble in a large pH range allowed the fabrication of scaffolds with a 3D interconnected porous structure. In particular, the developed scaffolds were composed of CMCS fibers with a small diameter (< 60 μm) and a hollow structure due to a fast non solvent-induced coagulation. Zn2+ ionotropic crosslinking endowed the CMCS scaffolds with stability in aqueous solutions, pH-sensitive water uptake capability, and antimicrobial activity against Escherichia coli and Staphylococcus aureus. In addition, post-printing functionalization through collagen grafting resulted in a decreased stiffness (1.6 ± 0.3 kPa) and a higher elongation at break (101 ± 9 %) of CMCS scaffolds, as well as in their improved ability to support in vitro fibroblast viability and wound healing process. The obtained results encourage therefore further investigation of the developed scaffolds as antimicrobial wound dressing hydrogels for skin regeneration.
Collapse
Affiliation(s)
- Lorenzo García
- Biopolymers Department, Biomaterials Center, University of Havana, Havana 10400, Cuba
| | - Simona Braccini
- BIOLab Research Group, Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Elia Pagliarini
- Department of Agricultural and Food Sciences, University of Bologna, Via Fanin 44, Bologna, Italy
| | - Viola Del Gronchio
- BIOLab Research Group, Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Diana Di Gioia
- Department of Agricultural and Food Sciences, University of Bologna, Via Fanin 44, Bologna, Italy
| | - Hazel Peniche
- Biopolymers Department, Biomaterials Center, University of Havana, Havana 10400, Cuba
| | - Carlos Peniche
- Physical Chemistry Department, Faculty of Chemistry, University of Havana, Havana 10400, Cuba
| | - Dario Puppi
- BIOLab Research Group, Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM Pisa, Via Moruzzi 13, 56124 Pisa, Italy.
| |
Collapse
|
2
|
Umezawa M, Ueya Y, Ichihashi K, Dung DTK, Soga K. Controlling Molecular Dye Encapsulation in the Hydrophobic Core of Core-Shell Nanoparticles for In Vivo Imaging. BIOMEDICAL MATERIALS & DEVICES (NEW YORK, N.Y.) 2023; 1:1-13. [PMID: 37363140 PMCID: PMC10081311 DOI: 10.1007/s44174-023-00073-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/20/2023] [Indexed: 06/28/2023]
Abstract
Polymeric nanoparticles with a hydrophobic core are valuable biomedical materials with potential applications in in vivo imaging and drug delivery. These materials are effective at protecting vulnerable molecules, enabling them to serve their functions in hydrophilic physiological environments; however, strategies that allow the chemical composition and molecular weight of polymers to be tuned, forming nanoparticles to control the functional molecules, are lacking. In this article, we review strategies for designing core-shell nanoparticles that enable the effective and stable encapsulation of functional molecules for biomedical applications. IR-1061, which changes its optical properties in response to the microenvironment are useful for in vitro screening of the in vivo stability of polymeric nanoparticles. An in vitro screening test can be performed by dispersing IR-1061-encapsulated polymer nanoparticles in water, saline, buffer solution, aqueous protein solution, etc., and measuring the absorption spectral changes. Through the screening, the effects of the polarity, molecular weight, and the chiral structure of polymers consisting of polymer nanoparticles on their stability have been revealed. Based on the findings presented here, more methodologies for the effective application of various biomolecules and macromolecules with complex high-dimensional structures are expected to be developed.
Collapse
Affiliation(s)
- Masakazu Umezawa
- Department of Materials Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585 Japan
| | - Yuichi Ueya
- Tsukuba Research Laboratories, JSR Corporation, 25 Miyukigaoka, Tsukuba, Ibaraki 305-0841 Japan
| | - Kotoe Ichihashi
- Department of Materials Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585 Japan
| | - Doan Thi Kim Dung
- Department of Materials Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585 Japan
| | - Kohei Soga
- Department of Materials Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585 Japan
| |
Collapse
|
3
|
Kumawat VS, Bandyopadhyay-Ghosh S, Ghosh SB. An overview of translational research in bone graft biomaterials. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:497-540. [PMID: 36124544 DOI: 10.1080/09205063.2022.2127143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Natural bone healing is often inadequate to treat fractures with critical size bone defects and massive bone loss. Immediate surgical interventions through bone grafts have been found to be essential on such occasions. Naturally harvested bone grafts, although are the preferred choice of the surgeons; they suffer from serious clinical limitations, including disease transmission, donor site morbidity, limited supply of graft etc. Synthetic bone grafts, on the other hand, offer a more clinically appealing approach to decode the pathways of bone repair through use of tissue engineered biomaterials. This article critically retrospects the translational research on various engineered biomaterials towards bringing transformative changes in orthopaedic healthcare. The first section of the article discusses about composition and ultrastructure of bone along with the global perspectives on statistical escalation of bone fracture surgeries requiring use of bone grafts. The next section reviews the types, benefits and challenges of various natural and synthetic bone grafts. An overview of clinically relevant biomaterials from traditionally used metallic, bioceramic, and biopolymeric biomaterials to new generation composites have been summarised. Finally, this narrative review concludes with the discussion on the emerging trends and future perspectives of the promising bone grafts.
Collapse
Affiliation(s)
- Vijay Shankar Kumawat
- Engineered Biomedical Materials Research and Innovation Centre (EnBioMatRIC), Manipal University Jaipur, Jaipur, Rajasthan, India.,Department of Mechanical Engineering, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Sanchita Bandyopadhyay-Ghosh
- Engineered Biomedical Materials Research and Innovation Centre (EnBioMatRIC), Manipal University Jaipur, Jaipur, Rajasthan, India.,Department of Mechanical Engineering, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Subrata Bandhu Ghosh
- Engineered Biomedical Materials Research and Innovation Centre (EnBioMatRIC), Manipal University Jaipur, Jaipur, Rajasthan, India.,Department of Mechanical Engineering, Manipal University Jaipur, Jaipur, Rajasthan, India
| |
Collapse
|
4
|
Promnil S, Ruksakulpiwat C, Numpaisal PO, Ruksakulpiwat Y. Electrospun Poly(lactic acid) and Silk Fibroin Based Nanofibrous Scaffold for Meniscus Tissue Engineering. Polymers (Basel) 2022; 14:polym14122435. [PMID: 35746011 PMCID: PMC9231281 DOI: 10.3390/polym14122435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/06/2022] [Accepted: 06/13/2022] [Indexed: 11/23/2022] Open
Abstract
Biopolymer based scaffolds are commonly considered as suitable materials for medical application. Poly(lactic acid) (PLA) is one of the most popular polymers that has been used as a bioscaffold, but it has poor cell adhesion and slowly degrades in an in vitro environment. In this study, silk fibroin (SF) was selected to improve cell adhesion and degradability of electrospun PLA. In order to fabricate a PLA/SF scaffold that offered both biological and mechanical properties, related parameters such as solution viscosity and SF content were studied. By varying the concentration and molecular weight of PLA, the solution viscosity significantly changed. The effect of solution viscosity on the fiber forming ability and fiber morphology was elucidated. In addition, commercial (l-lactide, d-lactide PLA) and medical grade PLA (pure PLLA) were both investigated. Mechanical properties, thermal properties, biodegradability, wettability, cell viability, and gene expression of electrospun PLA and PLA/SF based nanofibrous scaffolds were examined. The results demonstrated that medical grade PLA electrospun scaffolds offered superior mechanical property, degradability, and cellular induction for meniscus tissue regeneration. However, for commercial non-medical grade PLA used in this study, it was not recommended to be used for medical application because of its toxicity. With the addition of SF in PLA based scaffolds, the in vitro degradability and hydrophilicity were improved. PLAmed50:SF50 scaffold has the potential to be used as biomimetic meniscus scaffold for scaffold augmented suture based on mechanical properties, cell viability, gene expression, surface wettability, and in vitro degradation.
Collapse
Affiliation(s)
- Siripanyo Promnil
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (S.P.); (C.R.)
- Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330, Thailand
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Chaiwat Ruksakulpiwat
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (S.P.); (C.R.)
- Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330, Thailand
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Piya-on Numpaisal
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- School of Orthopaedics, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Correspondence: (P.-o.N.); (Y.R.); Tel.: +66-44-22-3917 (P.-o.N.); +66-44-22-3033 (Y.R.)
| | - Yupaporn Ruksakulpiwat
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (S.P.); (C.R.)
- Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330, Thailand
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Correspondence: (P.-o.N.); (Y.R.); Tel.: +66-44-22-3917 (P.-o.N.); +66-44-22-3033 (Y.R.)
| |
Collapse
|
5
|
Ichihashi K, Umezawa M, Ueya Y, Okubo K, Takamoto E, Matsuda T, Kamimura M, Soga K. Effect of the enantiomeric structure of hydrophobic polymers on the encapsulation properties of a second near infrared (NIR-II) fluorescent dye for in vivo deep imaging. RSC Adv 2022; 12:1310-1318. [PMID: 35425212 PMCID: PMC8979197 DOI: 10.1039/d1ra08330a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 12/11/2021] [Indexed: 01/09/2023] Open
Abstract
Over-thousand-nanometer (OTN) near-infrared (NIR) fluorophores are useful for biological deep imaging because of the reduced absorption and scattering of OTN-NIR light in biological tissues. IR-1061, an OTN-NIR fluorescent dye, has a hydrophobic and cationic backbone in its molecular structure, and a non-polar counter ion, BF4 -. Because of its hydrophobicity, IR-1061 needs to be encapsulated in a hydrophobic microenvironment, such as a hydrophobic core of polymer micelles, shielded with a hydrophilic shell for bioimaging applications. Previous studies have shown that the affinity of dyes with hydrophobic core polymers is dependent on the polarity of the core polymer, and that this characteristic is important for designing dye-encapsulated micelles to be used in bioimaging. In this study, the dye-polymer affinity was investigated using hydrophobic polymer films with different chiral structures of poly(lactic acid). IR-1061 showed higher affinity for l- and d-lactic acid copolymers (i.e., poly(dl-lactic acid) (PDLLA)) than to poly(l-lactic acid) (PLLA), as IR-1061 shows less dimerization in PDLLA than in PLLA. In contrast, the stability of IR-1061 in PDLLA was less than that in PLLA due to the influence of hydroxyl groups. Choosing hydrophobic core polymers for their robustness and dye affinity is an effective strategy to prepare OTN-NIR fluorescent probes for in vivo deep imaging.
Collapse
Affiliation(s)
- Kotoe Ichihashi
- Department of Materials Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science 6-3-1 Niijuku Katsushika Tokyo 125-8585 Japan
| | - Masakazu Umezawa
- Department of Materials Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science 6-3-1 Niijuku Katsushika Tokyo 125-8585 Japan
| | - Yuichi Ueya
- Tsukuba Research Laboratories, JSR Corporation 25 Miyukigaoka Tsukuba Ibaraki 305-0841 Japan
| | - Kyohei Okubo
- Department of Materials Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science 6-3-1 Niijuku Katsushika Tokyo 125-8585 Japan
| | - Eiji Takamoto
- Tsukuba Research Laboratories, JSR Corporation 25 Miyukigaoka Tsukuba Ibaraki 305-0841 Japan
| | - Takashi Matsuda
- Tsukuba Research Laboratories, JSR Corporation 25 Miyukigaoka Tsukuba Ibaraki 305-0841 Japan
| | - Masao Kamimura
- Department of Materials Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science 6-3-1 Niijuku Katsushika Tokyo 125-8585 Japan
| | - Kohei Soga
- Department of Materials Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science 6-3-1 Niijuku Katsushika Tokyo 125-8585 Japan
| |
Collapse
|
6
|
N-Acetyl-D-Glucosamine-Loaded Chitosan Filaments Biodegradable and Biocompatible for Use as Absorbable Surgical Suture Materials. MATERIALS 2019; 12:ma12111807. [PMID: 31167371 PMCID: PMC6600723 DOI: 10.3390/ma12111807] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 12/14/2022]
Abstract
The aim of this study was to prepare chitosan (CS) filaments incorporated with N-acetyl-D-Glucosamine (GlcNAc), using the wet spinning method, in order to combine the GlcNAc pharmacological properties with the CS biological properties for use as absorbable suture materials. The filaments were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), uniaxial tensile testing, in vitro biodegradation, and through in vitro drug release and cytotoxicity studies. It was observed that the addition of GlcNAc did not alter the morphology of the filaments. The CS and CS/GlcNAc filaments presented diameters 145 µm and 148 µm, respectively, and the surfaces were homogeneous. Although the mechanical resistance of the chitosan filaments decreased with the incorporation of the GlcNAc drug, this property was greater than the mean values indicated in the U.S. Pharmacopeia (1.7 N) for suture number 6-0 (filament diameter of 100–149 μm). The biodegradation of the CS filaments was accelerated by the addition of GlcNAc. After 35 days, the CS/GlcNAc filaments degradability was at its total, and for the CS filaments it was acquired in 49 days. The in vitro kinetic of the release process was of the zero-order and Hopfenberg models, controlled by both diffusion and erosion process. The in vitro cytotoxicity data of the CS and CS/GlcNAc filaments toward L929 cells showed that these filaments are nontoxic to these cells. Thus, the GlcNAc-loaded CS filaments might be promising as absorbable suture materials. In addition, this medical device may be able to enhance healing processes, relieve pain, and minimize infection at the surgery site due the prolonged release of GlcNAc.
Collapse
|
7
|
Puppi D, Chiellini F. Wet-spinning of biomedical polymers: from single-fibre production to additive manufacturing of three-dimensional scaffolds. POLYM INT 2017. [DOI: 10.1002/pi.5332] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Dario Puppi
- BIOLab Research Group, Department of Chemistry and Industrial Chemistry; University of Pisa, UdR INSTM Pisa; Via Moruzzi Pisa Italy
| | - Federica Chiellini
- BIOLab Research Group, Department of Chemistry and Industrial Chemistry; University of Pisa, UdR INSTM Pisa; Via Moruzzi Pisa Italy
| |
Collapse
|
8
|
Jenkins CL, Siebert HM, Wilker JJ. Integrating Mussel Chemistry into a Bio-Based Polymer to Create Degradable Adhesives. Macromolecules 2017. [DOI: 10.1021/acs.macromol.6b02213] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Courtney L. Jenkins
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| | - Heather M. Siebert
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| | - Jonathan J. Wilker
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
- School
of Materials Engineering, Purdue University, 701 West Stadium Avenue, West Lafayette, Indiana 47907-2045, United States
| |
Collapse
|
9
|
Arias V, Höglund A, Odelius K, Albertsson A. Polylactides with “green” plasticizers: Influence of isomer composition. J Appl Polym Sci 2013. [DOI: 10.1002/app.39446] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Veluska Arias
- Department of Fiber and Polymer TechnologyKTH Royal Institute of Technology100 44Stockholm Sweden
| | - Anders Höglund
- Department of Fiber and Polymer TechnologyKTH Royal Institute of Technology100 44Stockholm Sweden
| | - Karin Odelius
- Department of Fiber and Polymer TechnologyKTH Royal Institute of Technology100 44Stockholm Sweden
| | - Ann‐Christine Albertsson
- Department of Fiber and Polymer TechnologyKTH Royal Institute of Technology100 44Stockholm Sweden
| |
Collapse
|
10
|
Effects of protein molecular weight on the intrinsic material properties and release kinetics of wet spun polymeric microfiber delivery systems. Acta Biomater 2013; 9:4569-78. [PMID: 22902813 DOI: 10.1016/j.actbio.2012.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 08/01/2012] [Accepted: 08/08/2012] [Indexed: 11/23/2022]
Abstract
Wet spun microfibers have great potential for the design of multifunctional controlled release scaffolds. Understanding aspects of drug delivery and mechanical strength, specific to protein molecular weight, may aid in the optimization and development of wet spun fiber platforms. This study investigated the intrinsic material properties and release kinetics of poly(l-lactic acid) (PLLA) and poly(lactic-co-glycolic acid) (PLGA) wet spun microfibers encapsulating proteins with varying molecular weights. A cryogenic emulsion technique developed in our laboratory was used to encapsulate insulin (5.8 kDa), lysozyme (14.3 kDa) and bovine serum albumin (BSA, 66.0 kDa) within wet spun microfibers (~100 μm). Protein loading was found to significantly influence mechanical strength and drug release kinetics of PLGA and PLLA microfibers in a molecular-weight-dependent manner. BSA encapsulation resulted in the most significant decrease in strength and ductility for both PLGA and PLLA microfibers. Interestingly, BSA-loaded PLGA microfibers had a twofold increase (8±2 MPa to 16±1 MPa) in tensile strength and a fourfold increase (3±1% to 12±6%) in elongation until failure in comparison to PLLA microfibers. PLGA and PLLA microfibers exhibited prolonged protein release up to 63 days in vitro. Further analysis with the Korsmeyer-Peppas kinetic model determined that the mechanism of protein release was dependent on Fickian diffusion. These results emphasize the critical role protein molecular weight has on the properties of wet spun filaments, highlighting the importance of designing small molecular analogues to replace growth factors with large molecular weights.
Collapse
|
11
|
Lavin DM, Stefani RM, Zhang L, Furtado S, Hopkins RA, Mathiowitz E. Multifunctional polymeric microfibers with prolonged drug delivery and structural support capabilities. Acta Biomater 2012; 8:1891-900. [PMID: 22326788 DOI: 10.1016/j.actbio.2012.01.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 01/17/2012] [Accepted: 01/17/2012] [Indexed: 11/25/2022]
Abstract
The strength and stability of hybrid fiber delivery systems, ones that perform a mechanical function and simultaneously deliver drug, are critical in the design of surgically implantable constructs. We report the fabrication of drug-eluting microfibers where drug loading and processing conditions alone increase microfiber strength and stability partially due to solvent-induced crystallization. Poly(L-lactic acid) microfibers of 64±7 μm diameter were wet spun by phase inversion. Encapsulation of a model hydrophobic anti-inflammatory drug, dexamethasone, at high loading provided stability to microfibers which maintained linear cumulative release kinetics up to 8 weeks in vitro. In our wet spinning process, all microfibers had increased crystallinity (13-17%) in comparison to unprocessed polymer without any mechanical stretching. Moreover, microfibers with the highest drug loading retained 97% of initial tensile strength and were statistically stronger than all other microfiber formulations, including control fibers without drug. Results indicate that the encapsulation of small hydrophobic molecules (<400 Da) may increase the mechanical integrity of microfilaments whose crystallinity is also increased as a result of the process. Multifunctional drug-eluting microfibers can provide an exciting new opportunity to design novel biomaterials with mechanical stability and controlled release of a variety of therapeutics with micron-scale accuracy.
Collapse
|
12
|
Yang TI, Su TL, Lin PL, Tseng IH, Chang CH, Fang HW. Fabrication of porous polylactic acid films assisted by dip-coating and template leaching techniques. J Appl Polym Sci 2011. [DOI: 10.1002/app.35277] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Kikkawa Y, Kurokawa K, Kimura R, Takahashi M, Kanesato M, Abe H. Solvent-induced morphological diversification in poly(l-lactide-b-ɛ-caprolactone) block copolymer thin films. Polym Degrad Stab 2010. [DOI: 10.1016/j.polymdegradstab.2010.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Rissanen M, Puolakka A, Hukka T, Ellä V, Kellomäki M, Nousiainen P. Effect of hot drawing on properties of wet-spun poly(L,D-lactide) copolymer multifilament fibers. J Appl Polym Sci 2010. [DOI: 10.1002/app.31015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
15
|
Rissanen M, Puolakka A, Hukka T, Ellä V, Nousiainen P, Kellomäki M. Effect of process parameters on properties of wet-spun poly(L,D-lactide) copolymer multifilament fibers. J Appl Polym Sci 2009. [DOI: 10.1002/app.30387] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|