Kumar S, Mishra DK, Yoon S, Chauhan AK, Koh J. Synthesis of 2,5-furandicarboxylic acid-enriched-chitosan for anti-inflammatory and metal ion uptake.
Int J Biol Macromol 2021;
179:500-506. [PMID:
33711369 DOI:
10.1016/j.ijbiomac.2021.03.036]
[Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 11/29/2022]
Abstract
The main aim of the present study is to synthesize a hitherto unreported polymer of chitosan (CS) and 2,5-furandicarboxylic acid (FDCA) derived from renewable biomass resources. For this purpose, CS was chosen which had -NH2 groups as abundant active sites. Synthesis of 2,5-furandicarboxylic acid-enriched-chitosan polymer (CS-FDCA) was carried out by reaction involving EDC-NHS coupling reagents. The structure of CS-FDCA polymer was confirmed by various characterization techniques such as Fourier-transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance (1H NMR), X-ray powder diffraction (XRD), high resolution-field emission scanning electron microscope (HR-FESEM), and thermogravimetric analysis (TGA). Moreover, CS and CS-FDCA were scrutinized to examine their efficacies towards ameliorate inflammation via detection of lipopolysaccharide (LPS) induced nitric oxide (NO) production. As compared to CS, CS-FDCA with low concentration (1.0 μM) exhibited the better efficacy to reduce the NO production. Furthermore, CS-FDCA polymer showed high as 12.6% of Cu2+ ion uptake while CS showed 9.2% of Cu2+ ion uptake. Overall, it can be inferred that CS-FDCA polymer is expected to be used for biomedical application and for the removal of metal contaminants from industrial wastewater.
Collapse