1
|
Tomczyńska-Mleko M, Mleko S, Terpiłowski K, Pérez-Huertas S, Nishinari K. Aerated whey protein gels as a controlled release system of creatine investigated in an artificial stomach. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
2
|
Çetin Altındal D, Türkyılmaz P, Gümüşderelioğlu M. P(HEMA)-based SPH vehicles for high molecular weight protein delivery. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2019.1616198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | - Pınar Türkyılmaz
- Chemical Engineering Department, Hacettepe University, Ankara, Turkey
| | | |
Collapse
|
3
|
Tourné-Péteilh C, Robin B, Lions M, Martinez J, Mehdi A, Subra G, Devoisselle JM. Combining sol–gel and microfluidics processes for the synthesis of protein-containing hybrid microgels. Chem Commun (Camb) 2019; 55:13112-13115. [DOI: 10.1039/c9cc04963k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biocompatible encapsulation of proteins in hybrid microgels of a silylated hydrogel, focused on soft procedures and cross-linking conditions.
Collapse
Affiliation(s)
| | | | | | | | - Ahmad Mehdi
- ICGM
- University of Montpellier
- CNRS
- ENSCM
- Montpellier
| | - Gilles Subra
- IBMM
- University of Montpellier
- CNRS
- ENSCM
- Montpellier
| | | |
Collapse
|
4
|
Salimi-Kenari H, Mollaie F, Dashtimoghadam E, Imani M, Nyström B. Effects of chain length of the cross-linking agent on rheological and swelling characteristics of dextran hydrogels. Carbohydr Polym 2018; 181:141-149. [DOI: 10.1016/j.carbpol.2017.10.056] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/11/2017] [Accepted: 10/16/2017] [Indexed: 12/11/2022]
|
5
|
Zhao L, Chen Y, Li W, Lu M, Wang S, Chen X, Shi M, Wu J, Yuan Q, Li Y. Controlled uptake and release of lysozyme from glycerol diglycidyl ether cross-linked oxidized starch microgel. Carbohydr Polym 2015; 121:276-83. [PMID: 25659699 DOI: 10.1016/j.carbpol.2015.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 01/01/2015] [Accepted: 01/03/2015] [Indexed: 01/05/2023]
Abstract
A biodegradable microgel system based on glycerol-1,3-diglycidyl ether (GDGE) cross-linked TEMPO-oxidized potato starch polymers was developed for controlled uptake and release of proteins. A series of microgels were prepared with a wide range of charge density and cross-link density. We found both swelling capacity (SWw) and lysozyme uptake at saturation (Γsat) increased with increasing degree of oxidation (DO) and decreasing cross-link density. Microgel of DO100% with a low cross-link density (RGDGE/polymer (w/w) of 0.025) was selected to be the optimum gel type for lysozyme absorption; Γsat increased with increasing pH and decreasing ionic strength. It suggests that the binding strength was the strongest at high pH and low ionic strength, which was recognized as the optimum absorption conditions. The lysozyme release was promoted at low pH and high ionic strength, which were considered to be the most suitable conditions for triggering protein release. These results may provide useful information for the controlled uptake and release of proteins by oxidized starch microgels.
Collapse
Affiliation(s)
- Luhai Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, College of Life Science and Technology, P. O. Box 53, 100029 Beijing, China
| | - Yuying Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, College of Life Science and Technology, P. O. Box 53, 100029 Beijing, China
| | - Wei Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, College of Life Science and Technology, P. O. Box 53, 100029 Beijing, China
| | - Meiling Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, College of Life Science and Technology, P. O. Box 53, 100029 Beijing, China
| | - Shanshan Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, College of Life Science and Technology, P. O. Box 53, 100029 Beijing, China
| | - Xiaodong Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, College of Life Science and Technology, P. O. Box 53, 100029 Beijing, China
| | - Mengxuan Shi
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, College of Life Science and Technology, P. O. Box 53, 100029 Beijing, China
| | - Jiande Wu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, College of Life Science and Technology, P. O. Box 53, 100029 Beijing, China
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, College of Life Science and Technology, P. O. Box 53, 100029 Beijing, China
| | - Yuan Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, College of Life Science and Technology, P. O. Box 53, 100029 Beijing, China.
| |
Collapse
|
6
|
Tomczyńska-Mleko M, Mleko S. Whey protein aerated gels as matrices for controlled mineral release in simulated gastric conditions. Food Res Int 2014. [DOI: 10.1016/j.foodres.2014.02.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
He M, Chu CC. Dual stimuli responsive glycidyl methacrylate chitosan-quaternary ammonium hybrid hydrogel and its bovine serum albumin release. J Appl Polym Sci 2013. [DOI: 10.1002/app.39635] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mingyu He
- Department of Fiber Science and Apparel Design; Cornell University; Ithaca, New York; 14853-4401
| | | |
Collapse
|
8
|
Emami Meybodi Z, Imani M, Atai M. Kinetics of dextran crosslinking by epichlorohydrin: A rheometry and equilibrium swelling study. Carbohydr Polym 2013; 92:1792-8. [DOI: 10.1016/j.carbpol.2012.11.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Revised: 10/30/2012] [Accepted: 11/11/2012] [Indexed: 11/16/2022]
|
9
|
Gümüşderelioğlu M, Erce D, Demirtaş TT. Superporous polyacrylate/chitosan IPN hydrogels for protein delivery. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:2467-2475. [PMID: 21901372 DOI: 10.1007/s10856-011-4422-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 08/10/2011] [Indexed: 05/31/2023]
Abstract
In this study, poly(acrylamide), poly(AAm), and poly(acrylamide-co-acrylic acid), poly(AAm-co-AA) superporous hydrogels (SPHs) were synthesized by radical polymerization in the presence of gas blowing agent, sodium bicarbonate. In addition, ionically crosslinked chitosan (CH) superporous hydrogels were synthesized to form interpenetrating superporous hydrogels, i.e. poly(AAm)-CH and poly(AAm-co-AA)-CH SPH-IPNs. The hydrogels have a structure of interconnected pores with pore sizes of approximately 100-150 μm. Although the extent of swelling increased when AA were incorporated to the poly(AAm) structure, the time to reach the equilibrium swelling (~30 s) was not affected so much. In the presence of chitosan network mechanical properties significantly improved when compared with SPHs, however, equilibrium swelling time (~30 min) was prolonged significantly as due to the lower porosities and pore sizes of SPH-IPNs than that of SPHs. Model protein bovine serum albumin (BSA) was loaded into SPHs and SPH-IPNs by solvent sorption in very short time (<1 h) and very high capacities (~30-300 mg BSA/g dry gel) when compared to conventional hydrogels. BSA release profiles from SPHs and SPH-IPNs were characterized by an initial burst of protein during the first 20 min followed by a completed release within 1 h. However, total releasable amount of BSA from SPH-IPNs was lower than that of SPHs as due to the electrostatic interactions between chitosan and BSA.
Collapse
Affiliation(s)
- Menemşe Gümüşderelioğlu
- Chemical Engineering and Bioengineering Departments, Hacettepe University, 06800 Beytepe, Ankara, Turkey.
| | | | | |
Collapse
|
10
|
Silva I, Gurruchaga M, Goñi I. Drug release from microstructured grafted starch monolithic tablets. STARCH-STARKE 2011. [DOI: 10.1002/star.201100015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Iravani S, Fitchett CS, Georget DM. Physical characterization of arabinoxylan powder and its hydrogel containing a methyl xanthine. Carbohydr Polym 2011. [DOI: 10.1016/j.carbpol.2011.02.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Ainseba-Chirani N, Dembahri Z, Tokarski C, Rolando C, Benmouna M. Newly designed polyacrylamide/dextran gels for electrophoresis protein separation: synthesis and characterization. POLYM INT 2011. [DOI: 10.1002/pi.3035] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
El-Sherbiny IM, Salama A, Sarhan AA. Ionotropically cross-linked pH-sensitive IPN hydrogel matrices as potential carriers for intestine-specific oral delivery of protein drugs. Drug Dev Ind Pharm 2010; 37:121-30. [DOI: 10.3109/03639045.2010.495754] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
El-Sherbiny IM. Enhanced pH-responsive carrier system based on alginate and chemically modified carboxymethyl chitosan for oral delivery of protein drugs: Preparation and in-vitro assessment. Carbohydr Polym 2010. [DOI: 10.1016/j.carbpol.2010.01.034] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|