Optimization of molecularly imprinted polymer method for rapid screening of 17β-estradiol in water by fluorescence quenching.
Int J Anal Chem 2011;
2011:214747. [PMID:
21826142 PMCID:
PMC3150774 DOI:
10.1155/2011/214747]
[Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 05/03/2011] [Accepted: 05/16/2011] [Indexed: 11/17/2022] Open
Abstract
A new method was optimized for rapid screening of 17β-estradiol (E2) in water under 10 min. Molecularly imprinted polymer (MIP) particles (325 ± 25 nm) were added in a water sample at pH 5.5 and 20°C to form a suspension. Fluorescence emission from E2 nonspecifically bound onto the MIP particles was first quenched by large gold nanoparticles (43 ± 5 nm). The Stern-Volmer plot was linear, with dynamic quenching constants (Ksv) of 2.9 ×104 M−1. Fluorescence emission from E2 specifically bound inside the MIP particles was next quenched by small nitrite anions that easily penetrated the imprinted cavities. The Stern-Volmer plot became nonlinear, with Ksv = 2.1 × 102 M−1 and static quenching constant (V) below 1.0 M−1. The difference between these two emission intensities varied as the initial E2 concentration in water, generating a Scatchard calibration curve with R2 > 0.97 from 0.1 to 10 ppb.
Collapse