1
|
Rahimnejad M, Jahangiri S, Zirak Hassan Kiadeh S, Rezvaninejad S, Ahmadi Z, Ahmadi S, Safarkhani M, Rabiee N. Stimuli-responsive biomaterials: smart avenue toward 4D bioprinting. Crit Rev Biotechnol 2024; 44:860-891. [PMID: 37442771 DOI: 10.1080/07388551.2023.2213398] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/24/2023] [Accepted: 03/20/2023] [Indexed: 07/15/2023]
Abstract
3D bioprinting is an advanced technology combining cells and bioactive molecules within a single bioscaffold; however, this scaffold cannot change, modify or grow in response to a dynamic implemented environment. Lately, a new era of smart polymers and hydrogels has emerged, which can add another dimension, e.g., time to 3D bioprinting, to address some of the current approaches' limitations. This concept is indicated as 4D bioprinting. This approach may assist in fabricating tissue-like structures with a configuration and function that mimic the natural tissue. These scaffolds can change and reform as the tissue are transformed with the potential of specific drug or biomolecules released for various biomedical applications, such as biosensing, wound healing, soft robotics, drug delivery, and tissue engineering, though 4D bioprinting is still in its early stages and more works are required to advance it. In this review article, the critical challenge in the field of 4D bioprinting and transformations from 3D bioprinting to 4D phases is reviewed. Also, the mechanistic aspects from the chemistry and material science point of view are discussed too.
Collapse
Affiliation(s)
- Maedeh Rahimnejad
- Biomedical Engineering Institute, School of Medicine, Université de Montréal, Montréal, Canada
- Research Centre, Centre Hospitalier de L'Université de Montréal (CRCHUM), Montréal, Canada
| | - Sepideh Jahangiri
- Research Centre, Centre Hospitalier de L'Université de Montréal (CRCHUM), Montréal, Canada
- Department of Biomedical Sciences, Université de Montréal, Montréal, Canada
| | | | | | - Zarrin Ahmadi
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Australia
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria, Australia
| | - Sepideh Ahmadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Moein Safarkhani
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Australia
- School of Engineering, Macquarie University, Sydney, Australia
| |
Collapse
|
2
|
Hassan SU, Khalid I, Hussain L, Imam MT, Shahid I. Topical Delivery of Terbinafine HCL Using Nanogels: A New Approach to Superficial Fungal Infection Treatment. Gels 2023; 9:841. [PMID: 37998931 PMCID: PMC10670406 DOI: 10.3390/gels9110841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/04/2023] [Accepted: 10/18/2023] [Indexed: 11/25/2023] Open
Abstract
This study investigated pH-responsive Terbinafine HCL (TBH)-loaded nanogels as a new approach to treating superficial fungal infections. Acrylic acid (AA) is a synthetic monomer that was crosslinked with a natural polymer (gelatin) using a free radical polymerization technique to fabricate gelatin-g-poly-(acrylic acid) nanogels. Ammonium persulphate (APS) and N, N'-methylene bisacrylamide (MBA) were used as the initiator and crosslinker, respectively. Developed gelatin-g-poly-(acrylic acid) nanogels were evaluated for the swelling study (pH 1.2, 5, 7.4), DEE, particle size, FTIR, thermal stability (TGA, DSC), XRD, SEM, DEE, and in vitro drug release study to obtain optimized nanogels. Optimized nanogels were incorporated into 1% HPMC gel and then evaluated in comparison with Lamisil cream 1% for TBH stratum corneum retention, skin irritation, and in vitro and in vivo antifungal activity studies. Optimized nanogels (AAG 7) demonstrated a 255 nm particle size, 82.37% DEE, pH-dependent swelling, 92.15% of drug release (pH) 7.4 within 12 h, and a larger zone of inhibition compared to Lamisil cream. HPMC-loaded nanogels significantly improved the TBH skin retention percentage, as revealed by an ex vivo skin retention study, indicating the usefulness of nanogels for topical use. In vivo studies conducted on animal models infected with a fungal infection have further confirmed the effectiveness of nanogels compared with the Lamisil cream. Hence, Gelatin-g-poly-(acrylic acid) nanogels carrying poorly soluble TBH can be a promising approach for treating superficial fungal infections.
Collapse
Affiliation(s)
- Shams ul Hassan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan;
| | - Ikrima Khalid
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan;
| | - Liaqat Hussain
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan;
| | - Mohammad T. Imam
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia;
| | - Imran Shahid
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| |
Collapse
|
3
|
de Campos BA, da Silva NCB, Moda LS, Vidinha P, Maia-Obi LP. pH-Sensitive Degradable Oxalic Acid Crosslinked Hyperbranched Polyglycerol Hydrogel for Controlled Drug Release. Polymers (Basel) 2023; 15:polym15071795. [PMID: 37050409 PMCID: PMC10099053 DOI: 10.3390/polym15071795] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/08/2023] Open
Abstract
pH-sensitive degradable hydrogels are smart materials that can cleave covalent bonds upon pH variation, leading to their degradation. Their development led to many applications for drug delivery, where drugs can be released in a pH-dependent manner. Crosslinking hyperbranched polyglycerol (HPG), a biocompatible building block bearing high end-group functionality, using oxalic acid (OA), a diacid that can be synthesized from CO2 and form highly activated ester bonds, can generate this type of smart hydrogel. Aiming to understand the process of developing this novel material and its drug release for oral administration, its formation was studied by varying reactant stoichiometry, concentration and cure procedure and temperature; it was characterized regarding gel percent (%gel), swelling degree (%S), FTIR and thermal behavior; impregnated using ibuprofen, as a model drug, and a release study was carried out at pH 2 and 7. Hydrogel formation was evidenced by its insolubility, FTIR spectra and an increase in Td and Tg; a pre-cure step was shown to be crucial for its formation and an increase in the concentration of the reactants led to higher %gel and lower %S. The impregnation resulted in a matrix-encapsulated system; and the ibuprofen release was negligible at pH 2 but completed at pH 7 due to the hydrolysis of the matrix. A pH-sensitive degradable HPG-OA hydrogel was obtained and it can largely be beneficial in controlled drug release applications.
Collapse
Affiliation(s)
- Bianca Andrade de Campos
- Center of Engineering, Modelling and Applied Social Sciences, Federal University of ABC, Avenida dos Estados, 5001, Santo André 09210-580, SP, Brazil
| | - Natalia Cristina Borges da Silva
- Center of Engineering, Modelling and Applied Social Sciences, Federal University of ABC, Avenida dos Estados, 5001, Santo André 09210-580, SP, Brazil
| | - Lucas Szmgel Moda
- Center of Engineering, Modelling and Applied Social Sciences, Federal University of ABC, Avenida dos Estados, 5001, Santo André 09210-580, SP, Brazil
| | - Pedro Vidinha
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo 05508-000, SP, Brazil
| | - Lígia Passos Maia-Obi
- Center of Engineering, Modelling and Applied Social Sciences, Federal University of ABC, Avenida dos Estados, 5001, Santo André 09210-580, SP, Brazil
| |
Collapse
|
4
|
Recent Advances in Smart Hydrogels Prepared by Ionizing Radiation Technology for Biomedical Applications. Polymers (Basel) 2022; 14:polym14204377. [PMID: 36297955 PMCID: PMC9608571 DOI: 10.3390/polym14204377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/27/2022] [Accepted: 10/12/2022] [Indexed: 11/23/2022] Open
Abstract
Materials with excellent biocompatibility and targeting can be widely used in the biomedical field. Hydrogels are an excellent biomedical material, which are similar to living tissue and cannot affect the metabolic process of living organisms. Moreover, the three-dimensional network structure of hydrogel is conducive to the storage and slow release of drugs. Compared to the traditional hydrogel preparation technologies, ionizing radiation technology has high efficiency, is green, and has environmental protection. This technology can easily adjust mechanical properties, swelling, and so on. This review provides a classification of hydrogels and different preparation methods and highlights the advantages of ionizing radiation technology in smart hydrogels used for biomedical applications.
Collapse
|
5
|
Pourkhatoun M, Kalantari M, Kamyabi A, Moradi A. Preparation and Characterization of
pH‐Sensitive
Carboxymethyl
Cellulose‐Based
Hydrogels for Controlled Drug Delivery. POLYM INT 2022. [DOI: 10.1002/pi.6382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Mina Pourkhatoun
- Department of Chemical engineering, Faculty of Engineering Shahid Bahonar University of Kerman P.O. Box 7616913439 Kerman Iran
| | - Maryam Kalantari
- Department of Chemistry, Faculty of Science Shahid Bahonar University of Kerman P.O. Box 7616913439 Kerman Iran
| | - Ata Kamyabi
- Department of Chemical engineering, Faculty of Engineering Shahid Bahonar University of Kerman P.O. Box 7616913439 Kerman Iran
| | - Ali Moradi
- Department of Chemical engineering, Faculty of Engineering Shahid Bahonar University of Kerman P.O. Box 7616913439 Kerman Iran
| |
Collapse
|
6
|
Lori MS, Ohadi M, Estabragh MAR, Afsharipour S, Banat IM, Dehghannoudeh G. pH-sensitive polymer-based carriers as a useful approach for oral delivery of therapeutic protein: A review. Protein Pept Lett 2021; 28:1230-1237. [PMID: 34303327 DOI: 10.2174/0929866528666210720142841] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 11/22/2022]
Abstract
There are many proteins and enzymes in the human body, and their dysfunction can lead to disease. The use of proteins as a drug is common in various diseases such as diabetes. Proteins are hydrophilic molecules whose spatial structure is critical to their correct function. There are different ways to the administration of proteins. Protein structures are degraded by gastric acid and enzymes in the gastrointestinal tract and have a slight ability to permeation from the gastrointestinal epithelium due to their large hydrophilic nature. Therefore, their oral use has limitations. Since the oral use of drugs is one of the best and easiest routes for patients, many studies have been done to increase the stability, penetration and ultimately increase the bioavailability of proteins through oral administration. One of the studied strategies for oral delivery of protein is the use of pH-sensitive polymer-based carriers. These carriers use different pH-sensitive polymers such as eudragit®, chitosan, dextran, and alginate. The use of pH-sensitive polymer-based carriers by protecting the protein from stomach acid (low pH) and degrading enzymes, increasing permeability, and maintaining the spatial structure of the protein leads to increased bioavailability. In this review, we focus on the various polymers used to prepare pH-sensitive polymer-based carriers for the oral delivery of proteins.
Collapse
Affiliation(s)
- Maryam Shamseddini Lori
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Mandana Ohadi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Sepehr Afsharipour
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Ibrahim M Banat
- School of Biomedical Sciences, Faculty of Life & Health Sciences, University of Ulster, Coleraine BT52 1SA, Northern Ireland, United Kingdom
| | - Gholamreza Dehghannoudeh
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
7
|
Four-Dimensional (Bio-)printing: A Review on Stimuli-Responsive Mechanisms and Their Biomedical Suitability. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10249143] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The applications of tissue engineered constructs have witnessed great advances in the last few years, as advanced fabrication techniques have enabled promising approaches to develop structures and devices for biomedical uses. (Bio-)printing, including both plain material and cell/material printing, offers remarkable advantages and versatility to produce multilateral and cell-laden tissue constructs; however, it has often revealed to be insufficient to fulfill clinical needs. Indeed, three-dimensional (3D) (bio-)printing does not provide one critical element, fundamental to mimic native live tissues, i.e., the ability to change shape/properties with time to respond to microenvironmental stimuli in a personalized manner. This capability is in charge of the so-called “smart materials”; thus, 3D (bio-)printing these biomaterials is a possible way to reach four-dimensional (4D) (bio-)printing. We present a comprehensive review on stimuli-responsive materials to produce scaffolds and constructs via additive manufacturing techniques, aiming to obtain constructs that closely mimic the dynamics of native tissues. Our work deploys the advantages and drawbacks of the mechanisms used to produce stimuli-responsive constructs, using a classification based on the target stimulus: humidity, temperature, electricity, magnetism, light, pH, among others. A deep understanding of biomaterial properties, the scaffolding technologies, and the implant site microenvironment would help the design of innovative devices suitable and valuable for many biomedical applications.
Collapse
|
8
|
Ridzewski C, Li M, Dong B, Magdanz V. Gelatin Microcartridges for Onboard Activation and Antioxidant Protection of Sperm. ACS APPLIED BIO MATERIALS 2020; 3:1616-1627. [DOI: 10.1021/acsabm.9b01188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Clara Ridzewski
- Chair of Applied Zoology, TU Dresden, Zellescher Weg 20b, 01062 Dresden, Germany
| | - Mingtong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Bin Dong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Veronika Magdanz
- Chair of Applied Zoology, TU Dresden, Zellescher Weg 20b, 01062 Dresden, Germany
| |
Collapse
|
9
|
Chatterjee S, Chi-Leung Hui P. Review of Stimuli-Responsive Polymers in Drug Delivery and Textile Application. Molecules 2019; 24:E2547. [PMID: 31336916 PMCID: PMC6681499 DOI: 10.3390/molecules24142547] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 06/27/2019] [Accepted: 07/11/2019] [Indexed: 12/22/2022] Open
Abstract
This review describes some commercially available stimuli-responsive polymers of natural and synthetic origin, and their applications in drug delivery and textiles. The polymers of natural origin such as chitosan, cellulose, albumin, and gelatin are found to show both thermo-responsive and pH-responsive properties and these features of the biopolymers impart sensitivity to act differently under different temperatures and pH conditions. The stimuli-responsive characters of these natural polymers have been discussed in the review, and their respective applications in drug delivery and textile especially for textile-based transdermal therapy have been emphasized. Some practically important thermo-responsive polymers such as pluronic F127 (PF127) and poly(N-isopropylacrylamide) (pNIPAAm) of synthetic origin have been discussed in the review and they are of great importance commercially because of their in situ gel formation capacity. Some pH-responsive synthetic polymers have been discussed depending on their surface charge, and their drug delivery and textile applications have been discussed in this review. The selected stimuli-responsive polymers of synthetic origin are commercially available. Above all, the applications of bio-based or synthetic stimuli-responsive polymers in textile-based transdermal therapy are given special regard apart from their general drug delivery applications. A special insight has been given for stimuli-responsive hydrogel drug delivery systems for textile-based transdermal therapy, which is critical for the treatment of skin disease atopic dermatitis.
Collapse
Affiliation(s)
- Sudipta Chatterjee
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Patrick Chi-Leung Hui
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong.
| |
Collapse
|
10
|
Akhlaq M, Maryam F, Elaissari A, Ullah H, Adeel M, Hussain A, Ramzan M, Ullah O, Zeeshan Danish M, Iftikhar S, Aziz N. Pharmacokinetic evaluation of quetiapine fumarate controlled release hybrid hydrogel: a healthier treatment of schizophrenia. Drug Deliv 2018; 25:916-927. [PMID: 29649903 PMCID: PMC6058488 DOI: 10.1080/10717544.2018.1458922] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/23/2018] [Accepted: 03/25/2018] [Indexed: 01/11/2023] Open
Abstract
The current study aimed to rationally develop and characterize pH-sensitive controlled release hydrogels by graft polymerization of gelatin (Gel) and hydroxypropyl methyl cellulose (HPMC) in the presence of glutaraldehyde (GA) using quetiapine fumarate for the treatment of schizophrenia. The prepared hydrogels discs were subjected to various physicochemical studies including: swelling, diffusion, porosity, sol-gel analysis, Fourier transform infrared spectroscopy, differential scanning calorimetry, and scanning electron microscopy. Three different pH values (1.2, 6.8 and 7.4) were used to determine shape, transition, and controlled release behavior of prepared hydrogels. Various kinetic models including zero order, first order, Higuchi model and Power Law equation were applied on drug release data. The optimized hydrogels were subjected to in vivo studies using albino rabbits. Swelling and release results were found to be insignificant (p < .05) evidencing that there was no significant difference in swelling and drug release rate of hydrogels in different pH mediums. Swelling, porosity, gel-fraction, and drug released (%) were found to be dependent on concentrations of Gel, HPMC, and GA. Kinetic models revealed that QTP-F release followed non-Fickian diffusion. In-vivo studies contributed significantly higher plasma QTP-F concentration (Cmax), time for maximum plasma concentration (Tmax), area under the curve (AUC0-inf) and half-life (t1/2) as 18.32 ± 0.50 µg/ml, 8.00 ± 0.01 hrs, 6021.2 ± 5.09 µg.hrs/ml and 10.06 ± 0.43 hrs, respectively, for test-hydrogels when compared to reference market brand (Qusel® 200 mg, Hilton Pharma, Karachi, Pakistan) QTP-F tablets. It might be concluded that QTP-F loaded pH-sensitive hydrogels were developed successfully with reduced dosing frequency for schizophrenia.
Collapse
Affiliation(s)
- Muhammad Akhlaq
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| | - Faiza Maryam
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| | | | - Hashmat Ullah
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| | - Muhammad Adeel
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan, Pakistan
| | - Abid Hussain
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| | - Muhammad Ramzan
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| | - Obaid Ullah
- Drug Regulatory Authority of Pakistan, Islamabad, Pakistan
| | - Muhammad Zeeshan Danish
- Department of Pharmaceutics, University College of Pharmacy, University of Punjab, Lahore, Pakistan
| | | | - Nighat Aziz
- Department of Pharmacology, Gomal Medical College, Dera Ismail Khan, Pakistan
| |
Collapse
|
11
|
Etxabide A, Ribeiro RDC, Guerrero P, Ferreira AM, Stafford GP, Dalgarno K, de la Caba K, Gentile P. Lactose-crosslinked fish gelatin-based porous scaffolds embedded with tetrahydrocurcumin for cartilage regeneration. Int J Biol Macromol 2018; 117:199-208. [PMID: 29800660 DOI: 10.1016/j.ijbiomac.2018.05.154] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 01/09/2023]
Abstract
Tetrahydrocurcumin (THC) is one of the major colourless metabolites of curcumin and shows even greater pharmacological and physiological benefits. The aim of this work was the manufacturing of porous scaffolds as a carrier of THC under physiological conditions. Fish-derived gelatin scaffolds were prepared by freeze-drying by two solutions concentrations (2.5% and 4% w/v), cross-linked via addition of lactose and heat-treated at 105 °C. This cross-linking reaction resulted in more water resistant scaffolds with a water uptake capacity higher than 800%. Along with the cross-linking reaction, the gelatin concentration affected the scaffold morphology, as observed by scanning electron microscopy images, by obtaining a reduced porosity but larger pores sizes when the initial gelatin concentration was increased. These morphological changes led to a scaffold's strength enhancement from 0.92 ± 0.22 MPa to 2.04 ± 0.18 MPa when gelatin concentration was increased. THC release slowed down when gelatin concentration increased from 2.5 to 4% w/v, showing a controlled profile within 96 h. Preliminary in vitro test with chondrocytes on scaffolds with 4% w/v gelatin offered higher metabolic activities and cell survival up to 14 days of incubation. Finally the addition of THC did not influence significantly the cytocompatibility and potential antibacterial properties were demonstrated successfully against Staphylococcus aureus.
Collapse
Affiliation(s)
- A Etxabide
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain
| | - R D C Ribeiro
- School of Engineering, Newcastle University, Claremont Road, Newcastle Upon Tyne NE1 7RU, United Kingdom
| | - P Guerrero
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain
| | - A M Ferreira
- School of Engineering, Newcastle University, Claremont Road, Newcastle Upon Tyne NE1 7RU, United Kingdom
| | - G P Stafford
- School of Clinical Dentistry, University of Sheffield, 19 Claremont Crescent, Sheffield S10 2TA, United Kingdom
| | - K Dalgarno
- School of Engineering, Newcastle University, Claremont Road, Newcastle Upon Tyne NE1 7RU, United Kingdom
| | - K de la Caba
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain
| | - P Gentile
- School of Engineering, Newcastle University, Claremont Road, Newcastle Upon Tyne NE1 7RU, United Kingdom.
| |
Collapse
|
12
|
Bakravi A, Ahamadian Y, Hashemi H, Namazi H. Synthesis of gelatin-based biodegradable hydrogel nanocomposite and their application as drug delivery agent. ADVANCES IN POLYMER TECHNOLOGY 2018. [DOI: 10.1002/adv.21938] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Asghar Bakravi
- Research Laboratory of Dendrimers and Nanopolymers; Faculty of Chemistry; University of Tabriz; Tabriz Iran
| | - Yashar Ahamadian
- Research Laboratory of Dendrimers and Nanopolymers; Faculty of Chemistry; University of Tabriz; Tabriz Iran
| | - Hamed Hashemi
- Research Laboratory of Dendrimers and Nanopolymers; Faculty of Chemistry; University of Tabriz; Tabriz Iran
| | - Hassan Namazi
- Research Laboratory of Dendrimers and Nanopolymers; Faculty of Chemistry; University of Tabriz; Tabriz Iran
- Research Center for Pharmaceutical Nanotechnology (RCPN); Tabriz University of Medical Science; Tabriz Iran
| |
Collapse
|
13
|
A colon targeted drug delivery system based on alginate modificated graphene oxide for colorectal liver metastasis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [DOI: 10.1016/j.msec.2017.05.054] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
Guaresti O, García–Astrain C, Palomares T, Alonso–Varona A, Eceiza A, Gabilondo N. Synthesis and characterization of a biocompatible chitosan–based hydrogel cross–linked via ‘click’ chemistry for controlled drug release. Int J Biol Macromol 2017; 102:1-9. [DOI: 10.1016/j.ijbiomac.2017.04.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/21/2017] [Accepted: 04/02/2017] [Indexed: 12/12/2022]
|
15
|
Etxabide A, Vairo C, Santos-Vizcaino E, Guerrero P, Pedraz JL, Igartua M, de la Caba K, Hernandez RM. Ultra thin hydro-films based on lactose-crosslinked fish gelatin for wound healing applications. Int J Pharm 2017; 530:455-467. [PMID: 28789885 DOI: 10.1016/j.ijpharm.2017.08.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/28/2017] [Accepted: 08/01/2017] [Indexed: 02/07/2023]
Abstract
This study focuses on the development and characterization of an ultra thin hydro-film based on lactose-mediated crosslinking of fish gelatin by Maillard reaction. Lactose results in the only efficient crosslinker able to produce resistant to handling hydro-films when compared to conventional crosslinkers such as glutaraldehyde or genipin (tested at 25 and 37°C in phosphate buffer saline solution (PBS)).The disappearance of the peak related to the N-containing groups (XPS) and the images obtained by SEM and AFM demonstrate the highly ordered nano-scaled structure of lactose-crosslinked gelatin, confirming the crosslinking efficiency. This dressing presents high hydrophilicity and mild occlusivity, as shown by the swelling curve (max swelling at 5min) and by the occlusion factor of 25.17±0.99%, respectively. It demonstrates high stability to hydrolysis or cell-mediated degradation. Moreover, ISO 10993-5:2009 biocompatibility assay results in undetectable cytotoxicity effects. Spreading, adhesion and proliferation assays confirm the excellent adaptability of the cells onto the hydro-film surface without invading the dressing. Finally, the hydro-film enables the controlled delivery of therapeutic factors, such as the epidermal growth factor (EGF). This study demonstrates that lactose-mediated crosslinking is able to produce ultra thin gelatin hydro-films with suitable properties for biomedical applications, such as wound healing.
Collapse
Affiliation(s)
- Alaitz Etxabide
- BIOMAT Research Group, Chemical and Environmental Engineering Department, Engineering College of Gipuzkoa, University of the Basque Country (UPV/EHU), Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain
| | - Claudia Vairo
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Pedro Guerrero
- BIOMAT Research Group, Chemical and Environmental Engineering Department, Engineering College of Gipuzkoa, University of the Basque Country (UPV/EHU), Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Manoli Igartua
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Koro de la Caba
- BIOMAT Research Group, Chemical and Environmental Engineering Department, Engineering College of Gipuzkoa, University of the Basque Country (UPV/EHU), Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain.
| | - Rosa Maria Hernandez
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.
| |
Collapse
|
16
|
Raafat AI, Mahmoud GA, Ali AEH, Badawy NA, Elshahawy MF. In vitro evaluation of mucoadhesive and self-disinfection efficiency of (acrylic acid/polyethylene glycol)-silver nanocomposites for buccal drug delivery. J BIOACT COMPAT POL 2017. [DOI: 10.1177/0883911517710665] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A mucoadhesive drug delivery system can improve the effectiveness of a drug, allowing targeting and localization at a specific site. According to this assumption, γ-irradiation as eco-friendly technique was employed to synthesize (acrylic acid/polyethylene glycol) copolymer hydrogel of different compositions. Silver nanoparticles were prepared within (acrylic acid/polyethylene glycol) hydrogel network by means of in situ reduction of silver nitrate using sodium borohydride as a reducing agent. Swelling characteristics in distilled water and simulated saliva solution were studied as a function of copolymer composition and preparation irradiation dose. (Acrylic acid/polyethylene glycol) hydrogels and their developed Agº nanocomposites have been characterized using scanning electron microscope, thermogravimetric analysis, transmission electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction. Mucoadhesive strength as well as self-disinfection efficiency expressed as antibacterial activity against different bacterial strains was evaluated. Propranolol HCl as model drug was used to evaluate the potential efficiency of the obtained (acrylic acid/polyethylene glycol)-Agº nanocomposites as mucoadhesive drug carrier. The obtained results showed that the (acrylic acid/polyethylene glycol)-Agº nanocomposites show a promising self-disinfection property, and the propranolol HCl–loaded composites were able to deliver the loaded drug in a sustainable manner that lasts for about 600 min.
Collapse
Affiliation(s)
- Amany I Raafat
- Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| | - Ghada A Mahmoud
- Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| | - Amr El-Hag Ali
- Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| | - Nagwa A Badawy
- Department of Chemistry, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Mai F Elshahawy
- Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
17
|
Raafat AI, Ali AEH. pH-controlled drug release of radiation synthesized graphene oxide/(acrylic acid-co-sodium alginate) interpenetrating network. Polym Bull (Berl) 2016. [DOI: 10.1007/s00289-016-1818-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
18
|
Li C, Mu C, Lin W, Ngai T. Gelatin Effects on the Physicochemical and Hemocompatible Properties of Gelatin/PAAm/Laponite Nanocomposite Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2015. [PMID: 26202134 DOI: 10.1021/acsami.5b05287] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In recent years, inorganic nanoparticles such as Laponite have frequently been incorporated into polymer matrixes to obtain nanocomposite hydrogels with hierarchical structures, ultrastrong tensibilities, and high transparencies. Despite their unique physical and chemical properties, only a few reports have evaluated Laponite-based nanocomposite hydrogels for biomedical applications. This article presents the synthesis and characterization of a novel, hemocompatible nanocomposite hydrogels by in situ polymerization of acrylamide (AAm) in a mixed suspension containing Laponite and gelatin. The compatibility, structure, thermal stability, and mechanical properties of the resulting NC gels with varied gel compositions were investigated. Our results show that the prepared nanocomposite hydrogels exhibit good thermal stability and mechanical properties. The introduction of a biocompatible polymer, gelatin, into the polymer matrix did not change the transparency and homogeneity of the resulting nanocomposite hydrogels, but it significantly decreased the hydrogel's pH-responsive properties. More importantly, gelatins that were incorporated into the PAAm network resisted nonspecific protein adsorption, improved the degree of hemolysis, and eventually prolonged the clotting time, indicating that the in vitro hemocompatibility of the resulting nanocomposite hydrogels had been substantially enhanced. Therefore, these nanocomposite hydrogels provide opportunities for potential use in various biomedical applications.
Collapse
Affiliation(s)
| | | | | | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong , Shatin, N. T. Hong Kong
| |
Collapse
|
19
|
García-Astrain C, Chen C, Burón M, Palomares T, Eceiza A, Fruk L, Corcuera MÁ, Gabilondo N. Biocompatible Hydrogel Nanocomposite with Covalently Embedded Silver Nanoparticles. Biomacromolecules 2015; 16:1301-10. [DOI: 10.1021/acs.biomac.5b00101] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Clara García-Astrain
- Materials
+ Technologies Group, Department of Chemical and Environmental Engineering,
Polytechnic School, University of the Basque Country, Plaza Europa
1, 20018 San Sebastián, Spain
| | - Cheng Chen
- DGF-Centre
for Functional Nanostructures, Karlsruhe Institute of Technology (KIT), Wofgang Gaede Str. 1a, 76131 Karlsruhe, Germany
| | - María Burón
- Faculty
of Medicine and Dentistry, University of the Basque Country, Barrio
Sarriena s/n, 48940 Leioa, Spain
| | - Teodoro Palomares
- Faculty
of Medicine and Dentistry, University of the Basque Country, Barrio
Sarriena s/n, 48940 Leioa, Spain
| | - Arantxa Eceiza
- Materials
+ Technologies Group, Department of Chemical and Environmental Engineering,
Polytechnic School, University of the Basque Country, Plaza Europa
1, 20018 San Sebastián, Spain
| | - Ljiljana Fruk
- DGF-Centre
for Functional Nanostructures, Karlsruhe Institute of Technology (KIT), Wofgang Gaede Str. 1a, 76131 Karlsruhe, Germany
| | - M. Ángeles Corcuera
- Materials
+ Technologies Group, Department of Chemical and Environmental Engineering,
Polytechnic School, University of the Basque Country, Plaza Europa
1, 20018 San Sebastián, Spain
| | - Nagore Gabilondo
- Materials
+ Technologies Group, Department of Chemical and Environmental Engineering,
Polytechnic School, University of the Basque Country, Plaza Europa
1, 20018 San Sebastián, Spain
| |
Collapse
|
20
|
García-Astrain C, Ahmed I, Kendziora D, Guaresti O, Eceiza A, Fruk L, Corcuera MA, Gabilondo N. Effect of maleimide-functionalized gold nanoparticles on hybrid biohydrogels properties. RSC Adv 2015. [DOI: 10.1039/c5ra06806a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Nanoparticle cross-linking. Nanocomposite hydrogels with remarkable viscoelastic properties are prepared using maleimide coated gold nanoparticles as co cross-linkers for furan modified gelatin.
Collapse
Affiliation(s)
- C. García-Astrain
- ‘Materials + Technologies’ Group
- Dept. of Chemical and Environmental Engineering
- Polytechnic School
- University of the Basque Country
- 20018 Donostia-San Sebastián
| | - I. Ahmed
- DFG-Centre for Functional Nanostrucutres (CFN)
- Karlsruhe Institute of Technology
- 76131 Karlsruhe
- Germany
| | - D. Kendziora
- DFG-Centre for Functional Nanostrucutres (CFN)
- Karlsruhe Institute of Technology
- 76131 Karlsruhe
- Germany
| | - O. Guaresti
- ‘Materials + Technologies’ Group
- Dept. of Chemical and Environmental Engineering
- Polytechnic School
- University of the Basque Country
- 20018 Donostia-San Sebastián
| | - A. Eceiza
- ‘Materials + Technologies’ Group
- Dept. of Chemical and Environmental Engineering
- Polytechnic School
- University of the Basque Country
- 20018 Donostia-San Sebastián
| | - L. Fruk
- DFG-Centre for Functional Nanostrucutres (CFN)
- Karlsruhe Institute of Technology
- 76131 Karlsruhe
- Germany
| | - M. A. Corcuera
- ‘Materials + Technologies’ Group
- Dept. of Chemical and Environmental Engineering
- Polytechnic School
- University of the Basque Country
- 20018 Donostia-San Sebastián
| | - N. Gabilondo
- ‘Materials + Technologies’ Group
- Dept. of Chemical and Environmental Engineering
- Polytechnic School
- University of the Basque Country
- 20018 Donostia-San Sebastián
| |
Collapse
|
21
|
Feng D, Bai B, Wang H, Suo Y. Thermo-chemical modification to produce citric acid–yeast superabsorbent composites for ketoprofen delivery. RSC Adv 2015. [DOI: 10.1039/c5ra23577d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The native yeast microbes were used to prepare a novel eco-friendly superabsorbent composite through thermo-chemical modification of yeast with citric acid in semi-dry conditions for ketoprofen delivery.
Collapse
Affiliation(s)
- Diejing Feng
- College of Environmental Science and Engineering
- Chang’an University
- Xi’an
- P. R. China
| | - Bo Bai
- Key Laboratory of Tibetan Medicine Research
- Northwest Plateau Institute of Biology
- Chinese Academy of Sciences
- Xining
- P. R. China
| | - Honglun Wang
- Key Laboratory of Tibetan Medicine Research
- Northwest Plateau Institute of Biology
- Chinese Academy of Sciences
- Xining
- P. R. China
| | - Yourui Suo
- Key Laboratory of Tibetan Medicine Research
- Northwest Plateau Institute of Biology
- Chinese Academy of Sciences
- Xining
- P. R. China
| |
Collapse
|
22
|
Pradny M, Vetrik M, Hruby M, Michalek J. Biodegradable Porous Hydrogels. Adv Healthc Mater 2014. [DOI: 10.1002/9781118774205.ch8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
Stavrinidou E, Winther-Jensen O, Shekibi BS, Armel V, Rivnay J, Ismailova E, Sanaur S, Malliaras GG, Winther-Jensen B. Engineering hydrophilic conducting composites with enhanced ion mobility. Phys Chem Chem Phys 2014; 16:2275-9. [DOI: 10.1039/c3cp54061h] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Altimari I, Spizzirri UG, Iemma F, Curcio M, Puoci F, Picci N. pH-sensitive drug delivery systems by radical polymerization of gelatin derivatives. J Appl Polym Sci 2012. [DOI: 10.1002/app.36234] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Schoener C, Peppas N. Oral delivery of chemotherapeutic agents: background and potential of drug delivery systems for colon delivery. J Drug Deliv Sci Technol 2012. [DOI: 10.1016/s1773-2247(12)50081-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
Huang H, Yu Q, Peng X, Ye Z. Mesoporous protein thin films for molecule delivery. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm11090j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Cheng SH, Liao WN, Chen LM, Lee CH. pH-controllable release using functionalized mesoporous silica nanoparticles as an oral drug delivery system. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c0jm04490c] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|