1
|
Ke Q, Bai J, Zhang G, Zhang J, Yang M. Simultaneously Enhancing the Flame Retardancy, Water Resistance, and Mechanical Properties of Flame-Retardant Polypropylene via a Linear Vinyl Polysiloxane-Coated Ammonium Polyphosphate. Polymers (Basel) 2023; 15:polym15092074. [PMID: 37177219 PMCID: PMC10181116 DOI: 10.3390/polym15092074] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
It is challenging to improve the water resistance, flame retardancy, mechanical performance, and balance of halogen-free flame-retardant polypropylene (PP) composites. For this purpose, a linear vinyl polysiloxane (PD) was synthesized and then self-crosslinked under benzoyl peroxide to prepare surface-coated ammonium polyphosphate (APP@PD). Apparently, this linear vinyl polysiloxane self-crosslinking coating strategy was completely different from the commonly used sol-gel-coated APP with silane monomers. After coating, the water contact angles (WCA) of APP and APP@PD were 26.8° and 111.7°, respectively, showing high hydrophobicity. More importantly, PP/APP@PD/dipentaerythritol (DPER) showed a higher limiting oxygen index (LOI) and better UL-94 V-0 rate in comparison with PP/APP/DPER composites. After water immersion at 70 °C for 168 h, only PP/APP@PD/DPER kept the UL-94 V-0 rate and lowered the deterioration of the LOI, reflecting the better water-resistance property of APP@PD. Consistently, the cone calorimeter test results displayed a 26.2% and 16.7% reduction in peak heat release rate (PHRR) and total smoke production (TSP), respectively. Meanwhile, the time to peak smoke production rate (TPSPR) increased by 90.2%. The interfacial free energy (IFE) between APP@PD and PP was calculated to evaluate the interfacial interaction between PP and APP@PD. A reduction of 84.2% in the IFE between APP@PD and PP is responsible for the improvement in compatibility and the increase in flame retardancy, water resistance, and mechanical properties of the composites.
Collapse
Affiliation(s)
- Qining Ke
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastic, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junchen Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastic, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ge Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastic, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiacheng Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastic, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingshu Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastic, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Wu N, Xiu Z, Du J. Preparation of microencapsulated aluminum hypophosphite and flame retardancy and mechanical properties of flame-retardant ABS composites. J Appl Polym Sci 2017. [DOI: 10.1002/app.45008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ningjing Wu
- Key Laboratory of Rubber-Plastics, Ministry of Education, Shandong Provincial Key Laboratory of Rubber-Plastics; Qingdao University of Science & Technology; Qingdao City 266042 People's Republic of China
| | - Zhaoxia Xiu
- Key Laboratory of Rubber-Plastics, Ministry of Education, Shandong Provincial Key Laboratory of Rubber-Plastics; Qingdao University of Science & Technology; Qingdao City 266042 People's Republic of China
| | - Jiyu Du
- Key Laboratory of Rubber-Plastics, Ministry of Education, Shandong Provincial Key Laboratory of Rubber-Plastics; Qingdao University of Science & Technology; Qingdao City 266042 People's Republic of China
| |
Collapse
|