1
|
Liu YF, Wen ZF, Bian Y, Zhou Y, Liu ZF, Zhang Y, Feng XS. A Review on Recent Innovations of Pretreatment and Analysis Methods for Sulfonylurea Herbicides. Crit Rev Anal Chem 2022; 54:1462-1491. [PMID: 36045570 DOI: 10.1080/10408347.2022.2116694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Sulfonylurea herbicides (SUHs) are widely used in agriculture because of their low dosage, low cost, and high selectivity. However, due to improper use and lack of effective management, their residues pose a threat to the human health through environment and food pollution. Therefore, there is a need for simple, quick, economical, and effective methods to analyze SUHs in plant-derived foods, crops, and environmental samples. The present article presents a comprehensive review of the pretreatment and analytical technologies used for SUHs in various sample matrices, focusing on the developments since 2010. The main pretreatment methods include liquid-liquid extraction, solid-phase extraction, QuEChERS, and different microextraction methods, whereas analytical methods mainly include liquid chromatography coupled with different detectors, capillary electrophoresis, among others. In addition, the present study also compared the advantages and disadvantages of the methods and the future development is prospected.
Collapse
Affiliation(s)
- Yu-Fei Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, China Medical University, Shenyang, China
| | - Zhi-Feng Wen
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yu Bian
- Department of Pharmaceutical Analysis, School of Pharmacy, China Medical University, Shenyang, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhi-Fei Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, China Medical University, Shenyang, China
| | - Yuan Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, China Medical University, Shenyang, China
| | - Xue-Song Feng
- Department of Pharmaceutical Analysis, School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
2
|
Feng G, Sun J, Wang M, Wang M, Li Z, Wang S, Zheng L, Wang J, She Y, Abd El-Aty AM. Preparation of molecularly imprinted polymer with class-specific recognition for determination of 29 sulfonylurea herbicides in agro-products. J Chromatogr A 2021; 1647:462143. [PMID: 33957346 DOI: 10.1016/j.chroma.2021.462143] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/29/2021] [Accepted: 04/06/2021] [Indexed: 12/15/2022]
Abstract
Molecularly imprinting polymers with high selectivity toward 29 sulfonylurea herbicides were synthesized by precipitation polymerization, using metsulfuron-methyl and chlorsulfuron as the template molecule, 4-vinylpyridine as the function monomer, divinylbenzene as the crosslinking agent, and acetonitrile as porogen. The imprinted polymers were characterized and measured by scanning electron microscopy (SEM) and equilibrium adsorption experiments. The molecularly imprinted polymers displayed specific recognition for the tested 29 sulfonylurea herbicides, and the maximum apparent binding capacity was found to be 18.81 mg/g. The synthesized polymer was used as a solid-phase extraction (SPE) column coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) for determination of the tested analytes in agro-products. Within the range of 2-100 μg/L, the tested analytes have achieved a good linear association with correlation coefficient (R2) > 0.999. The calculated limits of detection (LODs, S/N=3) as along with limits of quantification (LOQs, S/N=10) were in the ranges of 0.005-0.07 μg/L and 0.018-0.23 μg/L, respectively. Under different spiking levels, the recovery rates were ranged from 74.8% - 110.5%, and the relative standard deviation (RSDs) were < 5.3%. Finally, the feasibility of the proposed methodology was successfully applied for detection of sulfonylurea herbicides in crops, vegetables, and oils samples.
Collapse
Affiliation(s)
- Gege Feng
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Science/Key Laboratory of Agro-Products Quality and Safety of Chinese Ministry of Agriculture, Beijing 100081, P. R. China
| | - Jianchun Sun
- Tibetan Inspection and Testing Center for Agricultural Product Quality and Safety, Lhasa, 850000, P.R. China
| | - Miao Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Science/Key Laboratory of Agro-Products Quality and Safety of Chinese Ministry of Agriculture, Beijing 100081, P. R. China
| | - Mengqiang Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Science/Key Laboratory of Agro-Products Quality and Safety of Chinese Ministry of Agriculture, Beijing 100081, P. R. China
| | - Zhuang Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Science/Key Laboratory of Agro-Products Quality and Safety of Chinese Ministry of Agriculture, Beijing 100081, P. R. China
| | - Shanshan Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Science/Key Laboratory of Agro-Products Quality and Safety of Chinese Ministry of Agriculture, Beijing 100081, P. R. China
| | - Lufei Zheng
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Science/Key Laboratory of Agro-Products Quality and Safety of Chinese Ministry of Agriculture, Beijing 100081, P. R. China.
| | - Jing Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Science/Key Laboratory of Agro-Products Quality and Safety of Chinese Ministry of Agriculture, Beijing 100081, P. R. China
| | - Yongxin She
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Science/Key Laboratory of Agro-Products Quality and Safety of Chinese Ministry of Agriculture, Beijing 100081, P. R. China.
| | - A M Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China; Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211-Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240-Erzurum, Turkey.
| |
Collapse
|
3
|
Azizi A, Bottaro CS. A critical review of molecularly imprinted polymers for the analysis of organic pollutants in environmental water samples. J Chromatogr A 2020; 1614:460603. [DOI: 10.1016/j.chroma.2019.460603] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 01/05/2023]
|
4
|
Chen L, Wu J, Huang X. Multiple monolithic fibers modified with a molecularly imprinted polymer for solid phase microextraction of sulfonylurea herbicides based on boron-nitrogen interaction. Mikrochim Acta 2019; 186:470. [DOI: 10.1007/s00604-019-3610-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/13/2019] [Indexed: 11/27/2022]
|
5
|
Preparation of a monolithic magnetic stir bar for the determination of sulfonylurea herbicides coupled with HPLC. Microchem J 2018. [DOI: 10.1016/j.microc.2018.05.049] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Tang J, Wang J, Shi S, Hu S, Yuan L. Determination of β-Agonist Residues in Animal-Derived Food by a Liquid Chromatography-Tandem Mass Spectrometric Method Combined with Molecularly Imprinted Stir Bar Sorptive Extraction. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2018; 2018:9053561. [PMID: 30046508 PMCID: PMC6036788 DOI: 10.1155/2018/9053561] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/24/2018] [Accepted: 05/20/2018] [Indexed: 06/08/2023]
Abstract
A novel clenbuterol molecularly imprinted polymer (MIP)-coated stir bar was prepared and applied to the determination of six β-agonists in animal-derived food. Characterization and various parameters affecting adsorption and desorption behaviours were investigated. The extraction capacities of clenbuterol, salbutamol, ractopamine, mabuterol, brombuterol, and terbutaline for MIP coating were 3.8, 2.9, 3.1, 3.5, 3.2, and 3.3 times higher, respectively, than those of the NIP coating, respectively. The method of MIP-coated SBSE coupled with HPLC-MS/MS was developed. The recoveries in pork and liver samples were 75.8-97.9% with RSD from 2.6 to 5.3%. Limits of detection (LODs) and limits of quantification (LOQs) were 0.05-0.15 μg/kg and 0.10-0.30 μg/kg, respectively. Good linearities were obtained for six β-agonists with correlation coefficients (R2) higher than 0.994. These results indicated the superiority of the proposed method in the analysis of β-agonists in a complex matrix.
Collapse
Affiliation(s)
- Jiwang Tang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
- Hunan Testing Institute Product and Commodity Supervison, Changsha 410007, China
| | - Jianxiu Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Shuyun Shi
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Shengqiang Hu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Liejiang Yuan
- Hunan Testing Institute Product and Commodity Supervison, Changsha 410007, China
| |
Collapse
|
7
|
Barchanska H, Danek M, Sajdak M, Turek M. Review of Sample Preparation Techniques for the Analysis of Selected Classes of Pesticides in Plant Matrices. Crit Rev Anal Chem 2018; 48:467-491. [PMID: 29621408 DOI: 10.1080/10408347.2018.1451297] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The aim of this article is to present the trends in extraction techniques applied for the isolation of pesticides from plant matrix. To fully compare the effectiveness of different extraction techniques, it was required to analyze compounds with possibly wide spectrum of physicochemical properties. Hence, compounds representing neonicotinoids, pyrethroids, sulfonylureas and phenylamides were selected. Based on literature studies, it may be concluded that there are three main approaches to make the analytical procedures for pesticides determination more effective: (i) the optimization of extraction conditions, however, according to ANOVA conducted on the collected literature data, not all parameters influence the extraction process equally; chemometric studies based on literature reports may lead to the conclusion that the most favorable conditions (criterion: analyte recovery, repeatability) for neonicotinoid, pyrethroid and sulfonylurea herbicide extraction from plant tissues are provided by QuEChERS - extraction with acetonitrile, while the mixtures of PSA and GCB (for neonicotinoids), and PSA, GCB, C18 (for pyrethroids) should be used in d-SPE step. For sulfonylurea compounds and metalaxyl it was impossible to identify a sorbent(s) that cleans up the extract more effectively than the others; (ii) to develop a new generation of sorbents; however, the range of their applicability is limited, mainly due to difficulties in their synthesis; (iii) to develop the new extraction techniques with as few "trouble spots" as possible.
Collapse
Affiliation(s)
- Hanna Barchanska
- a Department of Inorganic , Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology , Gliwice , Poland
| | - Magdalena Danek
- a Department of Inorganic , Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology , Gliwice , Poland
| | - Marcin Sajdak
- b Institute for Chemical Processing of Coal , Zabrze , Poland
| | - Marian Turek
- a Department of Inorganic , Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology , Gliwice , Poland
| |
Collapse
|
8
|
Whitcombe MJ, Kirsch N, Nicholls IA. Molecular imprinting science and technology: a survey of the literature for the years 2004-2011. J Mol Recognit 2014; 27:297-401. [PMID: 24700625 DOI: 10.1002/jmr.2347] [Citation(s) in RCA: 275] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/28/2013] [Accepted: 12/01/2013] [Indexed: 12/11/2022]
Abstract
Herein, we present a survey of the literature covering the development of molecular imprinting science and technology over the years 2004-2011. In total, 3779 references to the original papers, reviews, edited volumes and monographs from this period are included, along with recently identified uncited materials from prior to 2004, which were omitted in the first instalment of this series covering the years 1930-2003. In the presentation of the assembled references, a section presenting reviews and monographs covering the area is followed by sections describing fundamental aspects of molecular imprinting including the development of novel polymer formats. Thereafter, literature describing efforts to apply these polymeric materials to a range of application areas is presented. Current trends and areas of rapid development are discussed.
Collapse
|
9
|
Salting-out assisted liquid–liquid extraction combined with capillary HPLC for the determination of sulfonylurea herbicides in environmental water and banana juice samples. Talanta 2014; 127:51-8. [DOI: 10.1016/j.talanta.2014.03.070] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 03/26/2014] [Accepted: 03/28/2014] [Indexed: 11/24/2022]
|
10
|
He M, Chen B, Hu B. Recent developments in stir bar sorptive extraction. Anal Bioanal Chem 2013; 406:2001-26. [DOI: 10.1007/s00216-013-7395-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 09/12/2013] [Accepted: 09/23/2013] [Indexed: 10/26/2022]
|
11
|
Yang C, Wang J, Li D. Microextraction techniques for the determination of volatile and semivolatile organic compounds from plants: a review. Anal Chim Acta 2013; 799:8-22. [PMID: 24091369 DOI: 10.1016/j.aca.2013.07.069] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 07/31/2013] [Accepted: 07/31/2013] [Indexed: 11/25/2022]
Abstract
Vegetables and fruits are necessary for human health, and traditional Chinese medicine that uses plant materials can cure diseases. Thus, understanding the composition of plant matrix has gained increased attention in recent years. Since plant matrix is very complex, the extraction, separation and quantitation of these chemicals are challenging. In this review we focus on the microextraction techniques used in the determination of volatile and semivolatile organic compounds (such as esters, alcohols, aldehydes, hydrocarbons, ketones, terpenes, sesquiterpene, phenols, acids, plant secondary metabolites and pesticides) from plants (e.g., fruits, vegetables, medicinal plants, tree leaves, etc.). These microextraction techniques include: solid phase microextraction (SPME), stir-bar sorptive extraction (SBSE), single drop microextraction (SDME), hollow fiber liquid phase microextraction (HF-LPME), dispersive liquid liquid microextraction (DLLME), and gas purge microsyringe extraction (GP-MSE). We have taken into consideration papers published from 2008 to the end of January 2013, and provided critical and interpretative review on these techniques, and formulated future trends in microextraction for the determination of volatile and semivolatile compounds from plants.
Collapse
Affiliation(s)
- Cui Yang
- Key Laboratory of Natural Resource of the Changbai Mountain and Functional Molecular (Yanbian University), Ministry of Education, Park Road 977, Yanji City, Jilin Province 133002, China
| | | | | |
Collapse
|
12
|
Lucena R. Extraction and stirring integrated techniques: examples and recent advances. Anal Bioanal Chem 2012; 403:2213-23. [PMID: 22354573 DOI: 10.1007/s00216-012-5826-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/28/2012] [Accepted: 02/01/2012] [Indexed: 11/30/2022]
Abstract
Extraction techniques, which focus on selectivity and sensitivity enhancement by isolation and preconcentration of target analytes, are essential in many analytical methods. Because many extraction techniques occur under diffusion-controlled conditions, stirring of the sample solution is required to accelerate the extraction by favoring diffusion of the analytes from the bulk solution to the extractant phase. This stirring may be performed by use of an external device or by integrating extraction and stirring in the same device. This review focuses on the latter techniques, which are promising methods for sample treatment. First, stir-bar-sorptive extraction, the most widely used method, is considered, paying special attention to the development of new coatings. Finally, a general overview of novel integrated techniques in both solid-phase and liquid-phase microextraction is presented; their main characteristics and marked trends are reported.
Collapse
Affiliation(s)
- Rafael Lucena
- Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, Campus de Rabanales, University of Cordoba, Córdoba, Spain.
| |
Collapse
|