1
|
Zhou HY, Ou Y, Yan SS, Xie J, Zhou P, Wan L, Xu ZA, Liu FX, Zhang WL, Xia YC, Liu K. Supramolecular Polymer Ion Conductor with Weakened Li Ion Solvation Enables Room Temperature All-Solid-State Lithium Metal Batteries. Angew Chem Int Ed Engl 2023; 62:e202306948. [PMID: 37408357 DOI: 10.1002/anie.202306948] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 07/07/2023]
Abstract
Improved durability, enhanced interfacial stability, and room temperature applicability are desirable properties for all-solid-state lithium metal batteries (ASSLMBs), yet these desired properties are rarely achieved simultaneously. Here, in this work, it is noticed that the huge resistance at Li metal/electrolyte interface dominantly impeded the normal cycling of ASSLMBs especially at around room temperature (<30 °C). Accordingly, a supramolecular polymer ion conductor (SPC) with "weak solvation" of Li+ was prepared. Benefiting from the halogen-bonding interaction between the electron-deficient iodine atom (on 1,4-diiodotetrafluorobenzene) and electron-rich oxygen atoms (on ethylene oxide), the O-Li+ coordination was significantly weakened. Therefore, the SPC achieves rapid Li+ transport with high Li+ transference number, and importantly, derives a unique Li2 O-rich SEI with low interfacial resistance on lithium metal surface, therefore enabling stable cycling of ASSLMBs even down to 10 °C. This work is a new exploration of halogen-bonding chemistry in solid polymer electrolyte and highlights the importance of "weak solvation" of Li+ in the solid-state electrolyte for room temperature ASSLMBs.
Collapse
Affiliation(s)
- Hang-Yu Zhou
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- National Academy of Safety Science and Engineering, China Academy of Safety Science and Technology, Beijing, 100012, China
| | - Yu Ou
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Shuai-Shuai Yan
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jin Xie
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Pan Zhou
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Lei Wan
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Zi-Ang Xu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Feng-Xiang Liu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Wei-Li Zhang
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yin-Chun Xia
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Kai Liu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
2
|
Xu J, Li J, Li Y, Yang M, Chen L, Li H, Wu F. Long-Life Lithium-Metal All-Solid-State Batteries and Stable Li Plating Enabled by In Situ Formation of Li 3 PS 4 in the SEI Layer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203281. [PMID: 35765701 DOI: 10.1002/adma.202203281] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/18/2022] [Indexed: 06/15/2023]
Abstract
An ultrastable and kinetically favorable interface is constructed between sulfide-poly(ethylene oxide) (PEO) composite solid electrolytes (CSEs) and lithium metal, via in situ formation of a solid electrolyte interphase (SEI) layer containing Li3 PS4 . A specially designed sulfide, lithium polysulfidophosphate (LPS), can distribute uniformly in the PEO matrix via a simple stirring process because of its complete solubility in acetonitrile solvent, which is advantageous for creating a homogeneous SEI layer. The CSE/Li interface with high Li+ transportation capability is stabilized quickly through in situ formation of a Li3 PS4 /Li2 S/LiF layer via the reaction between LPS and lithium metal to inhibit lithium dendrite growth. A Li/Li symmetric cell with the LPS-integrated CSE exhibits constant and small CSE/Li resistance of 10 Ω cm2 during cycling, delivering stable cycling for 3475 h at a current density of 0.2 mA cm-2 and a high critical current density of 0.9 mA cm-2 at 60 °C. Impressive electrochemical performance is also demonstrated for LiFePO4 /CSE/Li all-solid-state batteries with capacity of 127.6 mAh g-1 after 1000 cycles at 1 C.
Collapse
Affiliation(s)
- Jieru Xu
- Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- College of Materials Science and Opto-Electronic Technology, School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Tianmu Lake Institute of Advanced Energy Storage Technologies, Liyang, Jiangsu, 213300, China
- Yangtze River Delta Physics Research Center, Liyang, Jiangsu, 213300, China
| | - Jiuming Li
- Beijing WeLion New Energy Technology Co., Ltd, Beijing, 102402, China
| | - Yongxing Li
- Tianmu Lake Institute of Advanced Energy Storage Technologies, Liyang, Jiangsu, 213300, China
- Yangtze River Delta Physics Research Center, Liyang, Jiangsu, 213300, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, Jiangsu, 215123, China
| | - Ming Yang
- Tianmu Lake Institute of Advanced Energy Storage Technologies, Liyang, Jiangsu, 213300, China
- Yangtze River Delta Physics Research Center, Liyang, Jiangsu, 213300, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, Jiangsu, 215123, China
| | - Liquan Chen
- Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- College of Materials Science and Opto-Electronic Technology, School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Tianmu Lake Institute of Advanced Energy Storage Technologies, Liyang, Jiangsu, 213300, China
- Yangtze River Delta Physics Research Center, Liyang, Jiangsu, 213300, China
| | - Hong Li
- Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- College of Materials Science and Opto-Electronic Technology, School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Tianmu Lake Institute of Advanced Energy Storage Technologies, Liyang, Jiangsu, 213300, China
- Yangtze River Delta Physics Research Center, Liyang, Jiangsu, 213300, China
| | - Fan Wu
- Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- College of Materials Science and Opto-Electronic Technology, School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Tianmu Lake Institute of Advanced Energy Storage Technologies, Liyang, Jiangsu, 213300, China
- Yangtze River Delta Physics Research Center, Liyang, Jiangsu, 213300, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, Jiangsu, 215123, China
| |
Collapse
|