1
|
Mohammed-Sadhakathullah AHM, Paulo-Mirasol S, Torras J, Armelin E. Advances in Functionalization of Bioresorbable Nanomembranes and Nanoparticles for Their Use in Biomedicine. Int J Mol Sci 2023; 24:10312. [PMID: 37373461 PMCID: PMC10299464 DOI: 10.3390/ijms241210312] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Bioresorbable nanomembranes (NMs) and nanoparticles (NPs) are powerful polymeric materials playing an important role in biomedicine, as they can effectively reduce infections and inflammatory clinical patient conditions due to their high biocompatibility, ability to physically interact with biomolecules, large surface area, and low toxicity. In this review, the most common bioabsorbable materials such as those belonging to natural polymers and proteins for the manufacture of NMs and NPs are reviewed. In addition to biocompatibility and bioresorption, current methodology on surface functionalization is also revisited and the most recent applications are highlighted. Considering the most recent use in the field of biosensors, tethered lipid bilayers, drug delivery, wound dressing, skin regeneration, targeted chemotherapy and imaging/diagnostics, functionalized NMs and NPs have become one of the main pillars of modern biomedical applications.
Collapse
Affiliation(s)
- Ahammed H. M. Mohammed-Sadhakathullah
- Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.2, 08019 Barcelona, Spain; (A.H.M.M.-S.); (S.P.-M.)
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.S, 08019 Barcelona, Spain
| | - Sofia Paulo-Mirasol
- Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.2, 08019 Barcelona, Spain; (A.H.M.M.-S.); (S.P.-M.)
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.S, 08019 Barcelona, Spain
| | - Juan Torras
- Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.2, 08019 Barcelona, Spain; (A.H.M.M.-S.); (S.P.-M.)
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.S, 08019 Barcelona, Spain
| | - Elaine Armelin
- Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.2, 08019 Barcelona, Spain; (A.H.M.M.-S.); (S.P.-M.)
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.S, 08019 Barcelona, Spain
| |
Collapse
|
2
|
Thombare N, Kumar S, Kumari U, Sakare P, Yogi RK, Prasad N, Sharma KK. Shellac as a multifunctional biopolymer: A review on properties, applications and future potential. Int J Biol Macromol 2022; 215:203-223. [PMID: 35718149 DOI: 10.1016/j.ijbiomac.2022.06.090] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 11/16/2022]
Abstract
Shellac is a physically refined form of lac resin, a natural biopolymer of animal origin obtained from tiny insects feeding on the sap of specific host trees. Shellac, in its basic form, is a polyester macromolecule composed of inter and intra esters of polyhydroxy aliphatic and sesquiterpene acids. It has been used in several industries for ages due to its exceptional properties such as film-forming, adhering, bonding, thermoplasticity, water-resistance and easy solubility in spirit and aqueous alkali solvents. From the beginning of the 21st century, due to increasing demand for natural products, a paradigm shift in the scope and applications of shellac has been witnessed, especially in green electronics, 3D printing, stealth technology, intelligent sensors, food and pharmaceutical industries. Shellac offers enormous potential for greener technologies as a natural and environmentally friendly material. This review provides an insight into the lac in detail, covering various forms of the lac, structure, properties, different applications of shellac and its future potential. This article would benefit the researchers involved in shellac research and others looking for natural and greener alternatives to synthetic polymers in various applications.
Collapse
Affiliation(s)
- Nandkishore Thombare
- ICAR - Indian Institute of Natural Resins and Gums, Ranchi 834010, Jharkhand, India.
| | - Saurav Kumar
- CSIR - Central Scientific Instruments Organisation, Chandigarh 160030, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Usha Kumari
- ICAR - Indian Institute of Natural Resins and Gums, Ranchi 834010, Jharkhand, India
| | - Priyanka Sakare
- ICAR - Indian Institute of Natural Resins and Gums, Ranchi 834010, Jharkhand, India
| | - Raj Kumar Yogi
- ICAR - Directorate of Rapeseed Mustard Research, Bharatpur 321303, Rajasthan, India
| | - Niranjan Prasad
- ICAR - Indian Institute of Natural Resins and Gums, Ranchi 834010, Jharkhand, India
| | - Kewal Krishan Sharma
- ICAR - Indian Institute of Natural Resins and Gums, Ranchi 834010, Jharkhand, India
| |
Collapse
|
3
|
Prawatborisut M, Janprasit J, Seidi F, Wongnate T, Flood A, Yiamsawas D, Crespy D. Preparation of nanoparticles of shellac and shellac-oligomer conjugates. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2022. [DOI: 10.1080/10601325.2021.2022983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mongkhol Prawatborisut
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Jindaporn Janprasit
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Farzad Seidi
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Thanyaporn Wongnate
- Department of Biomolecular Science and Engineering, School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Adrian Flood
- Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Doungporn Yiamsawas
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| |
Collapse
|
4
|
Yuan Y, He N, Dong L, Guo Q, Zhang X, Li B, Li L. Multiscale Shellac-Based Delivery Systems: From Macro- to Nanoscale. ACS NANO 2021; 15:18794-18821. [PMID: 34806863 DOI: 10.1021/acsnano.1c07121] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Delivery systems play a crucial role in enhancing the activity of active substances; however, they require complex processing techniques and raw material design to achieve the desired properties. In this regard, raw materials that can be easily processed for different delivery systems are garnering attention. Among these raw materials, shellac, which is the only pharmaceutically used resin of animal origin, has been widely used in the development of various delivery systems owing to its pH responsiveness, biocompatibility, and degradability. Notably, shellac performs better on encapsulating hydrophobic active substances than other natural polymers, such as polysaccharides and proteins. In addition, specially designed shellac-based delivery systems can also be used for the codelivery of hydrophilic and hydrophobic active substances. Shellac is most widely used for oral administration, as shellac-based delivery systems can form a compact structure through hydrophobic interaction, protecting transported active substances from the harsh environment of the stomach to achieve targeted delivery in the small intestine or colon. In this review, the advantages of shellac in delivery systems are discussed in detail. Multiscale shellac-based delivery systems from the macroscale to nanoscale are comprehensively introduced, including matrix tablets, films, enteric coatings, hydrogels, microcapsules, microparticles (beads/spheres), nanoparticles, and nanofibers. Furthermore, the hotspots, deficiencies, and future perspectives of shellac-based delivery system development are also analyzed. We hoped this review will increase the understanding of shellac-based delivery systems and inspire their further development.
Collapse
Affiliation(s)
- Yi Yuan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Ni He
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Liya Dong
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Qiyong Guo
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Xia Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Bing Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Lin Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China
| |
Collapse
|