1
|
Yadav H, Maiti S. Locust bean gum glutarate nanocomposite hydrogel microspheres of gliclazide: Optimization by Box-Behnken design and preclinical evaluation of anti-diabetic efficacy. Int J Biol Macromol 2024; 283:136963. [PMID: 39490492 DOI: 10.1016/j.ijbiomac.2024.136963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/16/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
In this study, carboxymethyl locust bean gum was synthesized and nanocomposite hydrogel microspheres (GHMs) of gliclazide were produced based on nanosilicate reinforcement and aluminium-ion driven gelation process, followed by covalent crosslinking with glutaric anhydride (GA). The effect of three independent variables (polymer and GA concentration, incubation time) on the drug entrapment efficiency (DEE%) and percent drug release at 8 h, was optimized using Box-Behnken design. The highest DEE (%) and lowest drug release was achieved at the following optimized conditions: polymer (2.43 %), GA (0.34 %), and incubation (27 min). The nanoscilicate-enriched matrix provided a maximum of 75.13 % DEE, 92.33 % gel fraction, and excellent flowability. The optimized microspheres had virtually spherical morphology, according to FE-SEM analysis. FTIR study indicated a hydrogen bonding interaction between the drug and other formulation components. X-ray and DSC measurements suggested that the crystallinity of the drug decreased following integration into the matrix. The optimized GHM demonstrated anomalous diffusion of gliclazide in simulated gastrointestinal fluids for 12 h without disintegration. In streptozotocin (50 mg/kg BW)-induced diabetic rats, the optimized formulation diminished blood glucose level by about 72 % in 12 h. Thus, the nanocomposite GHMs created by combining nanosilicate with GA had an outstanding potential for long-term control of diabetes.
Collapse
Affiliation(s)
- Harsh Yadav
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, India
| | - Sabyasachi Maiti
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, India.
| |
Collapse
|
2
|
Yadav H, Maiti S. Poly(allylamine)-adorned heptylcarboxymethyl galactomannan nanocarriers of canagliflozin for controlling type-2 diabetes: Optimization by Box-Behnken design and in vivo performance. Int J Biol Macromol 2024; 277:134253. [PMID: 39084426 DOI: 10.1016/j.ijbiomac.2024.134253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/10/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
In the past three decades, the prevalence of type-2 diabetes has arisen dramatically in countries of all income levels. A novel, most effective nanotechnology-based strategy may reduce the prevalence of diabetes. Recently, the shell-crosslinked polysaccharide-based micellar nanocarriers (MNCs) have shown great promise in terms of stability, controlled drug release, and improved in vivo performance. In this study, heptyl carboxymethyl guar gum was synthesized and characterized by ATR-FTIR, 1HNMR spectroscopy, surface charge, critical micelle concentration (23.9 μg/mL), and cytotoxicity analysis. Box-Behnken design was used to optimize the diameter, zeta potential, drug entrapment efficiency (DEE), and drug release characteristics of poly (allylamine)-crosslinked MNCs containing canagliflozin. The optimized MNCs revealed spherical morphology under TEM and had 149.3 nm diameter (PDI 21.2 %), +53.8 mV zeta potential, and 84 % DEE. The MNCs released about 63 % of the drug in 12 h under varying pH of the simulated gastrointestinal fluid. DSC and x-ray analyses suggested amorphous dispersion of drugs in the MNCs. CAM assay demonstrated the biocompatibility of the MNCs. The MNCs showed hemolysis of <1 %, 85 % mucin adsorption, and stability over three months. The MNCs demonstrated excellent anti-diabetic efficacy in streptozotocin-nicotinamide-induced diabetic rats, continuously lowering blood glucose levels up to 12 h.
Collapse
Affiliation(s)
- Harsh Yadav
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh 484887, India
| | - Sabyasachi Maiti
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh 484887, India.
| |
Collapse
|
3
|
Sana SS, Raorane CJ, Venkatesan R, Roy S, Swain SK, Kim SC, Al-Tabakha M, Bhandare RR, Raj V, Lee S. State-of-the-art progress on locust bean gum polysaccharide for sustainable food packaging and drug delivery applications: A review with prospectives. Int J Biol Macromol 2024; 275:133619. [PMID: 38964694 DOI: 10.1016/j.ijbiomac.2024.133619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/07/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
Locust bean gum (LBG), a polysaccharide-based natural polymer, is being widely researched as an appropriate additive for various products, including food, gluten-free formulations, medicines, paper, textiles, oil well drilling, cosmetics, and medical uses. Drug delivery vehicles, packaging, batteries, and catalytic supports are all popular applications for biopolymer-based materials. This review discusses sustainable food packaging and drug delivery applications for LBG. Given the benefits of LBG polysaccharide as a source of dietary fiber, it is also being investigated as a potential treatment for many health disorders, including colorectal cancer, diabetes, and gastrointestinal difficulties. The flexibility of LBG polysaccharide allows it to form hydrogen bonds with water molecules, a crucial characteristic of biomaterials, and the film-forming properties of LBG are critical for food packaging applications. The extraction process of LBG plays an important role in properties such as viscosity and gel-forming properties. Moreover, there are multiple factors such as temperature, pressure, pH, etc. The LBG-based functional composite film is effective in improving the shelf life as well as monitoring the freshness of fruits, meat and other processed food. The LBG-based hydrogel is excellent carrier of drugs and can be used for slow and sustainable release of active components present in drugs. Thus, the primary goal of this review was to conduct a comprehensive evaluation of the literature with a focus on the composition, properties, processing, food packaging, and medicine delivery applications of LBG polysaccharides. Thus, we investigated the chemical composition, extraction, and characteristics of LBG polysaccharides that underlie their applications in the food packaging and medicine delivery fields.
Collapse
Affiliation(s)
- Siva Sankar Sana
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, South Korea
| | | | - Raja Venkatesan
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, South Korea
| | - Swarup Roy
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Sarat K Swain
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018, Orissa, India
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, South Korea.
| | - Moawia Al-Tabakha
- College of Pharmacy & Health Sciences, Ajman University, PO Box 340, Ajman, United Arab Emirates; Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Richie R Bhandare
- College of Pharmacy & Health Sciences, Ajman University, PO Box 340, Ajman, United Arab Emirates; Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| | - Vinit Raj
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea
| | - Sangkil Lee
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Locust Bean Gum, a Vegetable Hydrocolloid with Industrial and Biopharmaceutical Applications. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238265. [PMID: 36500357 PMCID: PMC9736161 DOI: 10.3390/molecules27238265] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
Locust bean gum (LBG), a vegetable galactomannan extracted from carob tree seeds, is extensively used in the food industry as a thickening agent (E410). Its molecular conformation in aqueous solutions determines its solubility and rheological performance. LBG is an interesting polysaccharide also because of its synergistic behavior with other biopolymers (xanthan gum, carrageenan, etc.). In addition, this hydrocolloid is easily modified by derivatization or crosslinking. These LBG-related products, besides their applications in the food industry, can be used as encapsulation and drug delivery devices, packaging materials, batteries, and catalyst supports, among other biopharmaceutical and industrial uses. As the new derivatized or crosslinked polymers based on LBG are mainly biodegradable and non-toxic, the use of this polysaccharide (by itself or combined with other biopolymers) will contribute to generating greener products, considering the origin of raw materials used, the modification procedures selected and the final destination of the products.
Collapse
|
5
|
Malik NS, Ahmad M, Minhas MU, Tulain R, Barkat K, Khalid I, Khalid Q. Chitosan/Xanthan Gum Based Hydrogels as Potential Carrier for an Antiviral Drug: Fabrication, Characterization, and Safety Evaluation. Front Chem 2020; 8:50. [PMID: 32117876 PMCID: PMC7010646 DOI: 10.3389/fchem.2020.00050] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/16/2020] [Indexed: 01/24/2023] Open
Abstract
This study investigated the use of pure polymer chitosan (CS), xanthan gum (XG), monomer 2-acrylamido-2-methylpropane sulfonic acid (AMPS) and initiator potassium persulfate (KPS) as drug carrier system crosslinked through N' N'-methylene bis-acrylamide (MBA) for controlled drug delivery of acyclovir (ACV). ACV is highly effective and selective antiviral drugs used for prophylaxis and treatment against herpes simplex viruses (HSV) infections. Present oral marketed formulations are associated with number of side effects and shortcomings which hampered its clinical effectiveness. Hydrogels (FCX1-FCX9) composed of CS, XG, AMPS, MBA, and KPS were prepared by free radical polymerization technique and characterized through FTIR, PXRD, thermal analysis and SEM. Swelling dynamics and drug release behavior was also investigated. FTIR studies confirmed that ACV was successfully encapsulated into hydrogel polymeric network. SEM revealed porous structure whereas thermal analysis showed enhanced thermal stability of polymeric network. PXRD indicated amorphous dispersion of ACV during preparation process. Swelling dynamics and ACV release behavior from developed hydrogels was dependent on pH of the medium and concentration of pure reactants used. Korsmeyer-Peppas model was best fit to regression coefficient. The present work demonstrated a potential for developing a pH sensitive hydrogel for an antiviral drug ACV by using pure polymers CS, XG, and monomer AMPS.
Collapse
Affiliation(s)
- Nadia Shamshad Malik
- Department of Pharmacy, Capital University of Science & Technology, Islamabad, Pakistan
| | - Mahmood Ahmad
- Faculty of Pharmacy, University of Central Punjab, Lahore, Pakistan,*Correspondence: Mahmood Ahmad
| | | | - Ruqia Tulain
- Faculty of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Kashif Barkat
- Faculty of Pharmacy, University of Lahore, Lahore, Pakistan
| | - Ikrima Khalid
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Qandeel Khalid
- Department of Pharmacy, The University of Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
6
|
Bulut E. Chitosan coated- and uncoated-microspheres of sodium carboxymethyl cellulose/polyvinyl alcohol crosslinked with ferric ion: flurbiprofen loading and in vitro drug release study. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2019. [DOI: 10.1080/10601325.2019.1671770] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Emine Bulut
- Department of Food Processing, Bolvadin Vocational School, Afyon Kocatepe University, Afyonkarahisar, Turkey
| |
Collapse
|