1
|
Shrestha R, Thenissery A, Khupse R, Rajashekara G. Strategies for the Preparation of Chitosan Derivatives for Antimicrobial, Drug Delivery, and Agricultural Applications: A Review. Molecules 2023; 28:7659. [PMID: 38005381 PMCID: PMC10674490 DOI: 10.3390/molecules28227659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Chitosan has received much attention for its role in designing and developing novel derivatives as well as its applications across a broad spectrum of biological and physiological activities, owing to its desirable characteristics such as being biodegradable, being a biopolymer, and its overall eco-friendliness. The main objective of this review is to explore the recent chemical modifications of chitosan that have been achieved through various synthetic methods. These chitosan derivatives are categorized based on their synthetic pathways or the presence of common functional groups, which include alkylated, acylated, Schiff base, quaternary ammonia, guanidine, and heterocyclic rings. We have also described the recent applications of chitosan and its derivatives, along with nanomaterials, their mechanisms, and prospective challenges, especially in areas such as antimicrobial activities, targeted drug delivery for various diseases, and plant agricultural domains. The accumulation of these recent findings has the potential to offer insight not only into innovative approaches for the preparation of chitosan derivatives but also into their diverse applications. These insights may spark novel ideas for drug development or drug carriers, particularly in the antimicrobial, medicinal, and plant agricultural fields.
Collapse
Affiliation(s)
- Rajeev Shrestha
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA;
| | - Anusree Thenissery
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA;
| | - Rahul Khupse
- College of Pharmacy, University of Findlay, Findlay, OH 45840, USA;
| | - Gireesh Rajashekara
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA;
| |
Collapse
|
2
|
|
3
|
Alkabli J. Progress in preparation of thiolated, crosslinked, and imino-chitosan derivatives targeting specific applications. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.110998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
4
|
de Almeida WS, da Silva DA. Does polysaccharide quaternization improve biological activity? Int J Biol Macromol 2021; 182:1419-1436. [PMID: 33965482 DOI: 10.1016/j.ijbiomac.2021.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/26/2021] [Accepted: 05/02/2021] [Indexed: 12/19/2022]
Abstract
The natural polysaccharides, due to their structural diversity, commonly present very distinct solubility and physical chemical properties and additionally have intrinsic biological activities that, gene-rally, reveal themselves in a light way. The chemical modification of the molecular structure can improve these parameters. In this review, original articles that approached the quaternization of polysaccharides for purposes of biological application were selected, without limitation of year of publication, in the databases Scopus, Web of Science and PubMed. The results obtained from the bibliographic survey indicate that the increase in positive charges caused by quaternization improves the interaction between modified polysaccharides and structures that have negative charges on their surface, such as the cell wall of microorganisms and some cells in the human body, such as the DNA. This greater interaction is reflected as an increase in the biological activity of all polysaccharides broached in this study. Another important data obtained was the fact that the chemical changes did not affect or irrelevantly affect the toxicity of almost all of the polysaccharides that were quaternized. Therefore, polysaccharide quaternization is a safe and effective way to obtain improvements in the biological behavior of these macromolecules.
Collapse
Affiliation(s)
- Wanessa Sales de Almeida
- Programa de Pós-graduação em Ciência e Engenharia de Materiais, Universidade Federal do Piauí, Campus Ministro Petrônio Portela, 64049-550 Teresina, PI, Brazil.
| | - Durcilene Alves da Silva
- Programa de Pós-graduação em Ciência e Engenharia de Materiais, Universidade Federal do Piauí, Campus Ministro Petrônio Portela, 64049-550 Teresina, PI, Brazil; Núcleo de Pesquisa em Biotecnologia e Biodiversidade, Universidade Federal do Delta do Parnaíba, Brazil.
| |
Collapse
|
5
|
Kalelkar PP, Geng Z, Finn MG, Collard DM. Azide-Substituted Polylactide: A Biodegradable Substrate for Antimicrobial Materials via Click Chemistry Attachment of Quaternary Ammonium Groups. Biomacromolecules 2019; 20:3366-3374. [DOI: 10.1021/acs.biomac.9b00504] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Li Q, Sun X, Gu G, Guo Z. Novel Water Soluble Chitosan Derivatives with 1,2,3-Triazolium and Their Free Radical-Scavenging Activity. Mar Drugs 2018; 16:md16040107. [PMID: 29597269 PMCID: PMC5923394 DOI: 10.3390/md16040107] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/14/2018] [Accepted: 03/24/2018] [Indexed: 12/12/2022] Open
Abstract
Chitosan is an abundant and renewable polysaccharide, which exhibits attractive bioactivities and natural properties. Improvement such as chemical modification of chitosan is often performed for its potential of providing high bioactivity and good water solubility. A new class of chitosan derivatives possessing 1,2,3-triazolium charged units by associating “click reaction” with efficient 1,2,3-triazole quaternization were designed and synthesized. Their free radical-scavenging activity against three free radicals was tested. The inhibitory property and water solubility of the synthesized chitosan derivatives exhibited a remarkable improvement over chitosan. It is hypothesized that triazole or triazolium groups enable the synthesized chitosan to possess obviously better radical-scavenging activity. Moreover, the scavenging activity against superoxide radical of chitosan derivatives with triazolium (IC50 < 0.01 mg mL−1) was more efficient than that of derivatives with triazole and Vitamin C. In the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl radical-scavenging assay, the same pattern were observed, which should be related to the triazolium grafted at the periphery of molecular chains.
Collapse
Affiliation(s)
- Qing Li
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shangdong, China.
| | - Xueqi Sun
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shangdong, China.
- Graduate School of Chinese Academy of Sciences, Beijing 100039, China.
| | - Guodong Gu
- Alliance Pharma, Inc., 17 Lee Boulevard Malvern, PA 19355, USA.
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shangdong, China.
| |
Collapse
|
7
|
Argüelles-Monal WM, Lizardi-Mendoza J, Fernández-Quiroz D, Recillas-Mota MT, Montiel-Herrera M. Chitosan Derivatives: Introducing New Functionalities with a Controlled Molecular Architecture for Innovative Materials. Polymers (Basel) 2018; 10:E342. [PMID: 30966377 PMCID: PMC6414943 DOI: 10.3390/polym10030342] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/16/2018] [Accepted: 03/17/2018] [Indexed: 11/20/2022] Open
Abstract
The functionalization of polymeric substances is of great interest for the development of innovative materials for advanced applications. For many decades, the functionalization of chitosan has been a convenient way to improve its properties with the aim of preparing new materials with specialized characteristics. In the present review, we summarize the latest methods for the modification and derivatization of chitin and chitosan under experimental conditions, which allow a control over the macromolecular architecture. This is because an understanding of the interdependence between chemical structure and properties is an important condition for proposing innovative materials. New advances in methods and strategies of functionalization such as the click chemistry approach, grafting onto copolymerization, coupling with cyclodextrins, and reactions in ionic liquids are discussed.
Collapse
Affiliation(s)
| | - Jaime Lizardi-Mendoza
- Centro de Investigación en Alimentación y Desarrollo, Hermosillo 83304, Sonora, Mexico.
| | - Daniel Fernández-Quiroz
- Departamento de Investigación en Física, Universidad de Sonora, Hermosillo 83000, Sonora, Mexico.
| | | | - Marcelino Montiel-Herrera
- Departamento de Medicina y Ciencias de la Salud, Universidad de Sonora, Hermosillo 83000, Sonora, Mexico.
| |
Collapse
|
8
|
Liu Y, Nie W, Mu Y, Zhang H, Wang H, Jin H, Liu Z. A synthesis and performance evaluation of a highly efficient ecological dust depressor based on the sodium lignosulfonate–acrylic acid graft copolymer. RSC Adv 2018; 8:11498-11508. [PMID: 35542785 PMCID: PMC9079290 DOI: 10.1039/c7ra12556a] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/28/2018] [Indexed: 11/21/2022] Open
Abstract
In this paper, a highly efficient and environmentally-friendly dust depressor was developed based on the sodium lignosulfonate–acrylic acid graft copolymer. Using the grafting ratio as an index, a three-factor and four-level orthogonal experiment was conducted to optimize the fabrication conditions of the graft copolymer. At a reaction temperature of 60 °C, feed ratio mSLS–AA of 1 : 3, and FeSO4·7H2O content of 2.5%, the prototype produced the highest grafting ratio. The microstructure of the graft copolymer was measured using Fourier transform infrared spectrometry (FTIR) and nuclear magnetic resonance (1H-NMR). Furthermore, the influence of glycerol and the JFC penetrant on the contact angle between the compound solution and coal powder was investigated. Finally, four formulas of dust depressor were selected based on the experimental results. The dust-control performance of the four dust depressors was then tested on a large-scale spray dust suppression simulation platform. The results show that after applying formula 1 at various distances from the spray field, the average dust reduction rates of the total dust (respirable dust) at each point increased. Compared to the water-spraying dust suppression technique, the dust concentration is significantly reduced after the graft copolymer dust depressor is applied. In this paper, a highly efficient and environmentally-friendly dust depressor was developed based on the sodium lignosulfonate–acrylic acid graft copolymer.![]()
Collapse
Affiliation(s)
- Yanghao Liu
- College of Mining and Safety Engineering
- Shandong University of Science and Technology
- Qingdao 266590
- China
| | - Wen Nie
- College of Mining and Safety Engineering
- Shandong University of Science and Technology
- Qingdao 266590
- China
- State Key Laboratory of Mining Disaster Prevention and Control Co-found by Shandong Province and the Ministry of Science and Technology
| | - Yubing Mu
- College of Mining and Safety Engineering
- Shandong University of Science and Technology
- Qingdao 266590
- China
| | - Haihan Zhang
- College of Mining and Safety Engineering
- Shandong University of Science and Technology
- Qingdao 266590
- China
| | - Hongkun Wang
- College of Mining and Safety Engineering
- Shandong University of Science and Technology
- Qingdao 266590
- China
| | - Hu Jin
- College of Mining and Safety Engineering
- Shandong University of Science and Technology
- Qingdao 266590
- China
| | - Zhiqiang Liu
- College of Mining and Safety Engineering
- Shandong University of Science and Technology
- Qingdao 266590
- China
| |
Collapse
|
9
|
Sahariah P, Másson M. Antimicrobial Chitosan and Chitosan Derivatives: A Review of the Structure–Activity Relationship. Biomacromolecules 2017; 18:3846-3868. [DOI: 10.1021/acs.biomac.7b01058] [Citation(s) in RCA: 434] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Priyanka Sahariah
- Faculty
of Pharmaceutical Sciences, School of Health Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavik, Iceland
| | - Már Másson
- Faculty
of Pharmaceutical Sciences, School of Health Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavik, Iceland
| |
Collapse
|
10
|
|
11
|
Li Q, Tan W, Zhang C, Gu G, Guo Z. Synthesis of water soluble chitosan derivatives with halogeno-1,2,3-triazole and their antifungal activity. Int J Biol Macromol 2016; 91:623-9. [DOI: 10.1016/j.ijbiomac.2016.06.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/16/2016] [Accepted: 06/02/2016] [Indexed: 11/28/2022]
|
12
|
Ge Q, Ran J, Miao J, Yang Z, Xu T. Click Chemistry Finds Its Way in Constructing an Ionic Highway in Anion-Exchange Membrane. ACS APPLIED MATERIALS & INTERFACES 2015; 7:28545-28553. [PMID: 26645427 DOI: 10.1021/acsami.5b09920] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
To find the way to construct an ionic highway in anion-exchange membranes (AEMs), a series of side-chain-type alkaline polymer electrolytes (APEs) based on poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) polymer backbones were synthesized via Cu(I)-catalyzed click chemistry. The resulting triazole groups and quaternary ammonium (QA) groups facilitate the formation of a continuous hydrogen bond network, which will lead to high hydroxide conductivity according to Grotthuss-type mechanism. Microphase separation induced by long alkyl side chains contributes at the same time to further improving the hydroxide conductivity of the resultant AEMs. Hydroxide conductivity as high as 52.8 mS/cm is obtained for membrane TA-14C-1.21 (IEC = 1.21 mmol/g) with the longest pendant chain at 30 °C, and the conductivity can be increased to 140 mS/cm when the temperature was increased to 80 °C. Moreover, the corresponding water uptake is only 8.6 wt % at 30 °C. In the meantime, the membrane properties can be tuned by precisely regulating the hydrophilic/hydrophobic ratio in the cationic head groups. Compared with AEMs containing triazole and quaternized trimethylammonium head groups, enhanced dimensional stability and mechanical properties are obtained by tuning side-chain chemistry. However, the alkaline stability of the membrane is not as stable as anticipated, probably because of the existence of the triazole ring. Further study will be focused on increasing the alkali stability of the membrane. We envisage that the side-chain-type APEs meditated by click chemistry bearing long hydrophobic side chains pendant to the cationic head groups hold promise as a novel AEMs material.
Collapse
Affiliation(s)
- Qianqian Ge
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, University of Science and Technology of China , Hefei 230026, PR China
| | - Jin Ran
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, University of Science and Technology of China , Hefei 230026, PR China
| | - Jibin Miao
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, University of Science and Technology of China , Hefei 230026, PR China
| | - Zhengjin Yang
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, University of Science and Technology of China , Hefei 230026, PR China
| | - Tongwen Xu
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, University of Science and Technology of China , Hefei 230026, PR China
| |
Collapse
|
13
|
Novel triazolyl-functionalized chitosan derivatives with different chain lengths of aliphatic alcohol substituent: Design, synthesis, and antifungal activity. Carbohydr Res 2015; 418:44-49. [DOI: 10.1016/j.carres.2015.10.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 10/09/2015] [Accepted: 10/10/2015] [Indexed: 02/05/2023]
|
14
|
Li Z, Yang F, Yang R. Synthesis of chitosan derivative with dual-antibacterial functional groups and its antibacterial activity. J Appl Polym Sci 2015. [DOI: 10.1002/app.42663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhihan Li
- State Key Laboratory of Pulp & Paper Engineering; South China University of Technology; Guangzhou 510640 China
| | - Fei Yang
- State Key Laboratory of Pulp & Paper Engineering; South China University of Technology; Guangzhou 510640 China
| | - Rendang Yang
- State Key Laboratory of Pulp & Paper Engineering; South China University of Technology; Guangzhou 510640 China
| |
Collapse
|
15
|
Synthesis of amphiphilic aminated inulin via ‘click chemistry’ and evaluation for its antibacterial activity. Bioorg Med Chem Lett 2014; 24:4590-4593. [DOI: 10.1016/j.bmcl.2014.07.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/20/2014] [Accepted: 07/11/2014] [Indexed: 11/18/2022]
|