1
|
Yegorov A, Pushkin S, Arshintseva E, Molchanov M, Timchenko M. Influence of Parameters Used to Prepare Sterile Solutions of Poloxamer 188 on Their Physicochemical Properties. Polymers (Basel) 2024; 17:62. [PMID: 39795465 PMCID: PMC11722941 DOI: 10.3390/polym17010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
The physicochemical properties of emulsions based on poloxamers (triblock copolymers of a hydrophobic polyoxypropylene chain and two hydrophilic polyoxyethylene chains) depend on the composition and preparation method. This study examined the impact of poloxamer P188 concentration, autoclaving mode, heating, and salt presence on the viscosity, particle size distribution, and morphology of particles using viscometric analysis, dynamic light scattering (DLS), and atomic force microscopy (AFM). It was shown that sample preparation affects the particle size and morphology but not the chemical composition of P188. The most similar properties were found for 10% P188 samples sterilized by filtration and autoclaving. The higher autoclave temperature and additional heating of the 10% P188 samples to 70 °C resulted in the formation of larger particles. For 4% P188 samples with 0.6% NaCl, samples heated at 70 °C for 15 h after sterilization filtration and autoclaving were the most similar and homogeneous. The 4% P188 sample with the higher autoclave temperature and subsequent heating had the lowest viscosity. In contrast to 10% P188, for 4% P188 in the presence of salt, the lack of heating resulted in the formation of large particles. The 4% P188 solutions with NaCl were more stable during storage than those with a higher concentration.
Collapse
Affiliation(s)
- Alexander Yegorov
- Institute of Theoretical and Experimental Biophysics RAS, Pushchino 142290, Russia; (A.Y.); (M.M.)
| | - Sergei Pushkin
- Medical Emulsions LLC, Serpukhov, Pushchino 142290, Russia; (S.P.); (E.A.)
| | - Elena Arshintseva
- Medical Emulsions LLC, Serpukhov, Pushchino 142290, Russia; (S.P.); (E.A.)
| | - Maxim Molchanov
- Institute of Theoretical and Experimental Biophysics RAS, Pushchino 142290, Russia; (A.Y.); (M.M.)
| | - Maria Timchenko
- Institute of Theoretical and Experimental Biophysics RAS, Pushchino 142290, Russia; (A.Y.); (M.M.)
| |
Collapse
|
2
|
Patel D, Tripathi N, Vaswani P, Pérez-Sánchez G, Bhatia D, Kuperkar K, Coutinho JAP, Bahadur P. Role of Unimers to Polymersomes Transition in Pluronic Blends for Controlled and Designated Drug Conveyance. J Phys Chem B 2024; 128:6151-6166. [PMID: 38845485 DOI: 10.1021/acs.jpcb.4c00561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
This study investigates the nanoscale self-assembly from mixtures of two symmetrical poly(ethylene oxide)-poly(propylene oxide)-pol(ethylene oxide) (PEO-PPO-PEO) block copolymers (BCPs) with different lengths of PEO blocks and similar PPO blocks. The blended BCPs (commercially known as Pluronic F88 and L81, with 80 and 10% PEO, respectively) exhibited rich phase behavior in an aqueous solution. The relative viscosity (ηrel) indicated significant variations in the flow behavior, ranging from fluidic to viscous, thereby suggesting a possible micellar growth or morphological transition. The tensiometric experiments provided insight into the intermolecular hydrophobic interactions at the liquid-air interface favoring the surface activity of mixed-system micellization. Dynamic light scattering (DLS) and small-angle neutron scattering (SANS) revealed the varied structural morphologies of these core-shell mixed micelles and polymersomes formed under different conditions. At a concentration of ≤5% w/v, Pluronic F88 exists as molecularly dissolved unimers or Gaussian chains. However, the addition of the very hydrophobic Pluronic L81, even at a much lower (<0.2%) concentration, induced micellization and promoted micellar growth/transition. These results were further substantiated through molecular dynamics (MD) simulations, employing a readily transferable coarse-grained (CG) molecular model grounded in the MARTINI force field with density and solvent-accessible surface area (SASA) profiles. These findings proved that F88 underwent micellar growth/transition in the presence of L81. Furthermore, the potential use of these Pluronic mixed micelles as nanocarriers for the anticancer drug quercetin (QCT) was explored. The spectral analysis provided insight into the enhanced solubility of QCT through the assessment of the standard free energy of solubilization (ΔG°), drug-loading efficiency (DL%), encapsulation efficiency (EE%), and partition coefficient (P). A detailed optimization of the drug release kinetics was presented by employing various kinetic models. The [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] MTT assay, a frequently used technique for assessing cytotoxicity in anticancer research, was used to gauge the effectiveness of these QCT-loaded mixed nanoaggregates.
Collapse
Affiliation(s)
- Divya Patel
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Ichchhanath, Surat 395 007, Gujarat, India
| | - Nitumani Tripathi
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Ichchhanath, Surat 395 007, Gujarat, India
| | - Payal Vaswani
- Biomedical Engineering, Indian Institute of Technology Gandhinagar (IITGn), Palaj, Gandhinagar 382 355, Gujarat, India
| | - Germán Pérez-Sánchez
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro 3810-1933, Portugal
| | - Dhiraj Bhatia
- Biomedical Engineering, Indian Institute of Technology Gandhinagar (IITGn), Palaj, Gandhinagar 382 355, Gujarat, India
| | - Ketan Kuperkar
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Ichchhanath, Surat 395 007, Gujarat, India
| | - João A P Coutinho
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro 3810-1933, Portugal
| | - Pratap Bahadur
- Department of Chemistry, Veer Narmad South Gujarat University (VNSGU), Udhana-Magdalla Road, Surat 395 007, Gujarat, India
| |
Collapse
|
3
|
Khesali Aghtaei H, Heyer R, Reichl U, Benndorf D. Improved biological methanation using tubular foam-bed reactor. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:66. [PMID: 38750538 PMCID: PMC11097517 DOI: 10.1186/s13068-024-02509-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Power-to-gas is the pivotal link between electricity and gas infrastructure, enabling the broader integration of renewable energy. Yet, enhancements are necessary for its full potential. In the biomethanation process, transferring H2 into the liquid phase is a rate-limiting step. To address this, we developed a novel tubular foam-bed reactor (TFBR) and investigated its performance at laboratory scale. RESULTS A non-ionic polymeric surfactant (Pluronic® F-68) at 1.5% w/v was added to the TFBR's culture medium to generate a stabilized liquid foam structure. This increased both the gas-liquid surface area and the bubble retention time. Within the tubing, cells predominantly traveled evenly suspended in the liquid phase or were entrapped in the thin liquid film of bubbles flowing inside the tube. Phase (I) of the experiment focused primarily on mesophilic (40 °C) operation of the tubular reactor, followed by phase (II), when Pluronic® F-68 was added. In phase (II), the TFBR exhibited 6.5-fold increase in biomethane production rate (MPR) to 15.1 ( L CH 4 /L R /d) , with a CH4 concentration exceeding 90% (grid quality), suggesting improved H2 transfer. Transitioning to phase (III) with continuous operation at 55 °C, the MPR reached 29.7L CH 4 /L R /d while maintaining the grid quality CH4. Despite, reduced gas-liquid solubility and gas-liquid mass transfer at higher temperatures, the twofold increase in MPR compared to phase (II) might be attributed to other factors, i.e., higher metabolic activity of the methanogenic archaea. To assess process robustness for phase (II) conditions, a partial H2 feeding regime (12 h 100% and 12 h 10% of the nominal feeding rate) was implemented. Results demonstrated a resilient MPR of approximately 14.8L CH 4 /L R /d even with intermittent, low H2 concentration. CONCLUSIONS Overall, the TFBR's performance plant sets the course for an accelerated introduction of biomethanation technology for the storage of volatile renewable energy. Robust process performance, even under H2 starvation, underscores its reliability. Further steps towards an optimum operation regime and scale-up should be initiated. Additionally, the use of TFBR systems should be considered for biotechnological processes in which gas-liquid mass transfer is a limiting factor for achieving higher reaction rates.
Collapse
Affiliation(s)
- Hoda Khesali Aghtaei
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Sandtorstraße 1, 39106, Magdeburg, Germany
- Bioprocess Engineering, Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Robert Heyer
- Database and Software Engineering Group, Otto von Guericke University, Universitätsplatz 2, 39106, Magdeburg, Germany
- Faculty of Technology (TechFak) Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
- Multidimensional Omics Analyses group, Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Bunsen-Kirchhoff-Straße 11, 44139, Dortmund, Germany
| | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Sandtorstraße 1, 39106, Magdeburg, Germany
- Bioprocess Engineering, Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Dirk Benndorf
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Sandtorstraße 1, 39106, Magdeburg, Germany.
- Bioprocess Engineering, Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany.
- Applied Biosciences and Process Engineering, Anhalt University of Applied Sciences, Bernburger Straße 55, 1458, 06366, Köthen, Germany.
| |
Collapse
|
4
|
Development of surface conjugated block co polymeric micelles as targeted therapeutics: characterization and in-vitro cell viability. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-022-03362-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Novel Non-Viral Vectors Based on Pluronic ® F68PEI with Application in Oncology Field. Polymers (Basel) 2022; 14:polym14235315. [PMID: 36501709 PMCID: PMC9739301 DOI: 10.3390/polym14235315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/07/2022] Open
Abstract
Copolymers composed of low-molecular-weight polyethylenimine (PEI) and amphiphilic Pluronics® are safe and efficient non-viral vectors for pDNA transfection. A variety of Pluronic® properties provides a base for tailoring transfection efficacy in combination with the unique biological activity of this polymer group. In this study, we describe the preparation of new copolymers based on hydrophilic Pluronic® F68 and PEI (F68PEI). F68PEI polyplexes obtained by doping with free F68 (1:2 and 1:5 w/w) allowed for fine-tuning of physicochemical properties and transfection activity, demonstrating improved in vitro transfection of the human bone osteosarcoma epithelial (U2OS) and oral squamous cell carcinoma (SCC-9) cells when compared to the parent formulation, F68PEI. Although all tested systems condensed pDNA at varying polymer/DNA charge ratios (N/P, 5/1−100/1), the addition of free F68 (1:5 w/w) resulted in the formation of smaller polyplexes (<200 nm). Analysis of polyplex properties by transmission electron microscopy and dynamic light scattering revealed varied polyplex morphology. Transfection potential was also found to be cell-dependent and significantly higher in SCC-9 cells compared to the control bPEI25k cells, as especially evident at higher N/P ratios (>25). The observed selectivity towards transfection of SSC-9 cells might represent a base for further optimization of a cell-specific transfection vehicle.
Collapse
|
6
|
Marcos X, Méndez-Luna D, Fragoso-Vázquez M, Rosales-Hernández M, Correa-Basurto J. Anti-breast cancer activity of novel compounds loaded in polymeric mixed micelles: Characterization and in vitro studies. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Becherová L, Prokopec V, Čejková J. Vibrational spectroscopic analysis of critical micelle concentration in sodium decanoate solutions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 250:119387. [PMID: 33422883 DOI: 10.1016/j.saa.2020.119387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/02/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
The presented study is devoted to the investigation of the micellization-induced liquid-liquid fluctuations in sodium decanoate (NaD) aqueous solutions, based on the vibrational spectroscopic study of NaD and the determination of critical micelle concentration (CMC) of this system. At the same time, we focused on monitoring the effect of the addition of decanol to this system and changing its basic parameters from the point of view of CMC. CMC is an important parameter from a practical point of view and a characteristic feature of each micelle-forming compound. Upon analyzing the spectroscopic data we focus our attention mainly on the intensity and band position variations of both the symmetrical and antisymmetrical vibrational modes of CH2 groups situated in the high-frequency part of the spectrum. The study used normal (non-enhanced) Raman spectroscopy with excitation wavelength 785 nm, surface-enhanced Raman spectroscopy (SERS) on large-scaled gold-coated SERS-active substrates and infrared spectral measurements. The results of spectroscopic measurements were supported by tensiometry and potentiometry.
Collapse
Affiliation(s)
- Lucia Becherová
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5,166 28, Prague 6, Czechia
| | - Vadym Prokopec
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5,166 28, Prague 6, Czechia
| | - Jitka Čejková
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Technická 3,166 28, Prague 6, Czechia.
| |
Collapse
|
8
|
Öztürk-Atar K, Kaplan M, Çalış S. Development and evaluation of polymeric micelle containing tablet formulation for poorly water-soluble drug: tamoxifen citrate. Drug Dev Ind Pharm 2020; 46:1695-1704. [PMID: 32893676 DOI: 10.1080/03639045.2020.1820037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Poor aqueous solubility is one of the key reasons for slow dissolution rate and poor intestinal absorption and finally that causes low therapeutic efficacy of many existing drugs. Tamoxifen citrate (TMX) (BCS Class II drug) with low water solubility has poor oral bioavailability in the range of 20%-30%, therefore, high doses are required for treatment with TMX. Self-assemblage of amphiphilic polymers leads to the formation of polymeric micelles which makes them unique nano-carriers with excellent biocompatibility, low toxicity, enhanced blood circulation time, and solubilization of poorly water-soluble drugs. In this study poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) triblock copolymer, which has been approved by FDA for oral application was used to benefit its micellar solubilization effect. Self-assembled micelles were prepared for the delivery of TMX and this way TMX solubility was increased approximately 60 times. TMX-treated cells showed 38.06 ± 1.5% viability at 50 µM concentration for 24 h; 66.71 ± 11.6% viability at 25 µM concentration for 48 h, at the same conditions TMX-loaded micelles exhibited 24.994 ± 0.25% and 43.36 ± 4.37% cell viability, respectively (p < 0.05). These results showed that the encapsulation of TMX into PEG-PPG-PEG micelles facilitated the cellular uptake, which led to an increased cytotoxicity in MCF-7 cancer cells. Tablet formulation containing lyophilized TMX-loaded micelles was showed an improved dissolution than commercial TMX tablet (Tamoxifen® TEVA). It can be reasonably expected that the obtained drug dissolution rate and increased cytotoxicity to tumor cells will result in an increase of TMX bioavailability and tolerability associated with an important dose reduction and decreased side effects.
Collapse
Affiliation(s)
- Kıvılcım Öztürk-Atar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Meryem Kaplan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Sema Çalış
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
9
|
Samith VD, Navarro S, Dabirian R. Morphological and Semi-empirical Study of the Pluronic F68/Imogolite/Sudan III Intersurfaces Composite for the Controlled Temperature Release of Hydrophobic Drugs. ACS OMEGA 2020; 5:20707-20723. [PMID: 32875204 PMCID: PMC7450501 DOI: 10.1021/acsomega.9b02965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 03/03/2020] [Indexed: 06/11/2023]
Abstract
Some PluronicF68 (F68) triblock copolymer properties demonstrate surprising applications in selective drug administration, such as the transportation of hydrophobic anti-inflammatories through epithelial barriers. Nuclear magnetic resonance (1H-NMR) spectroscopy was carried out for micelle precursor dispersions and F68 films modified with a synthetic imogolite (IMO) biocompatible hydrogel. Theoretical calculations and morphological assessment for the process of morphogenesis of dendritic crystallization were performed by molecular docking and atomic force microscopy (AFM) of the Sudan III-IMO-F68 composite, which was more hydrophobic than Sudan III-F68 and carried out the prolonged release of the Sudan III "drug" captured by a water-octanol interface determined by standard absorbance. Surface fusions were measured and compared to the unmodified matrix. However, despite the superior properties of the composite, the critical micelle concentration (CMC) was practically unmodified because solitary IMO strands attached to Sudan III formed Sudan III-IMO. These strands unraveled in a stable manner by expanding like a "spiderweb" in hydrophilic interfaces according to NMR analysis of the hydrogen one H1 polarization of Sudan III and F68 methyl, whose correlation relates hydrophobicity of Sudan III-IMO-F68 with dendrite properties from F68 concentrations. CMC and surface fusions equivalent to F68 surface properties, calculated by differential scanning calorimetry and dynamic Raman spectroscopy, were determined by AFM and high-resolution ellipsometry. Our results show highly specialized pharmacological applications since micelle surfaces expand, triggering maximum deliveries of "Drugs" from its interior to the physiological environment. The implanted sensor prototype determined equilibria reached Sudan III according to temperature (32-50 °C) and time it took to cross the membrane model 1-octanol (48 h). The findings suggest that the targested design of a F68-IMO-"Drug" would function as a microdevice for the prolonged release of hydrophobic drugs. In addition, the said microdevice could regenerate the damaged tissue in the central nervous system or other organs of the body. This is due to the fact that it could perform both tasks simultaneously, given the properties and characteristics acquired by the compatible material depending on the temperature of the physiological environment.
Collapse
Affiliation(s)
- Vicente D. Samith
- Departamento de
Química, Facultad de Ciencias, Universidad
de Chile, Las Palmeras 3425, Santiago 244355, Chile
- Institute for Medical
and Biological Engineering, Schools of Engineering, Biological Sciences
and Medicine, Pontificia Universidad Católica
de Chile, Santiago 7800003, Chile
| | - Sebastián Navarro
- Departamento de
Química, Facultad de Ciencias, Universidad
de Chile, Las Palmeras 3425, Santiago 244355, Chile
| | - Reza Dabirian
- Departamento de
Química, Facultad de Ciencias, Universidad
de Chile, Las Palmeras 3425, Santiago 244355, Chile
- Istituto per la Sintesi
Organica e la Fotoreattività, Consiglio
Nazionale delle Ricerche, Via Gobetti 101, 40129 Bologna, Italy
| |
Collapse
|
10
|
Mehjabin JJ, Wei L, Petitbois JG, Umezawa T, Matsuda F, Vairappan CS, Morikawa M, Okino T. Biosurfactants from Marine Cyanobacteria Collected in Sabah, Malaysia. JOURNAL OF NATURAL PRODUCTS 2020; 83:1925-1930. [PMID: 32432877 DOI: 10.1021/acs.jnatprod.0c00164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Chemical investigation of the organic extract from Moorea bouillonii, collected in Sabah, Malaysia, led to the isolation of three new chlorinated fatty acid amides, columbamides F (1), G (2), and H (3). The planar structures of 1-3 were established by a combination of mass spectrometric and NMR spectroscopic analyses. The absolute configuration of 1 was determined by Marfey's analysis of its hydrolysate and chiral-phase HPLC analysis after conversion and esterification with Ohrui's acid, (1S,2S)-2-(anthracene-2,3-dicarboximido)cyclohexanecarboxylic acid. Compound 1 showed biosurfactant activity by an oil displacement assay. Related known fatty acid amides columbamide D and serinolamide C exhibited biosurfactant activity with critical micelle concentrations of about 0.34 and 0.78 mM, respectively.
Collapse
Affiliation(s)
| | | | | | | | | | - Charles S Vairappan
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu 88450, Sabah, Malaysia
| | | | | |
Collapse
|
11
|
Injectable in situ forming nanogel: A hybrid Alginate-NLC formulation extends bupivacaine anesthetic effect. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 109:110608. [PMID: 32228992 DOI: 10.1016/j.msec.2019.110608] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 12/20/2019] [Accepted: 12/26/2019] [Indexed: 01/19/2023]
Abstract
Finding an ideal anesthetic agent for postoperative pain control, with long action and low side effects, is still a challenge. Local anesthetics have potential for such application if their time of action is improved. This work introduces a new hybrid formulation formed by the association of a nanostructured lipid carrier with a biopolymeric system to encapsulate bupivacaine (BVC). The hybrid formulation was physicochemical and structurally characterized by DLS, TEM, DSC, XRD and FTIR-ATR, and it remained stable for 12 months at room temperature. In vivo analgesia and imaging tests showed that the hybrid system was able to modulate the release, and to increase the concentration of BVC at the site of action, by forming a nanogel in situ. Such nanogel improved over 5 times (>24 h) the anesthesia duration, when compared to free BVC at clinical (0.5%) doses. Therefore, this novel in situ-forming nanogel shows great potential to be used in postsurgical pain control, improving the action of BVC, without losing its versatility of (infiltrative) application.
Collapse
|
12
|
Grimaudo MA, Amato G, Carbone C, Diaz-Rodriguez P, Musumeci T, Concheiro A, Alvarez-Lorenzo C, Puglisi G. Micelle-nanogel platform for ferulic acid ocular delivery. Int J Pharm 2019; 576:118986. [PMID: 31870956 DOI: 10.1016/j.ijpharm.2019.118986] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/04/2019] [Accepted: 12/19/2019] [Indexed: 12/26/2022]
Abstract
Corneal wound healing after a trauma or a chemical injury has been shown to correlate with antioxidant levels at the ocular surface. However, ocular bioavailability of efficient antioxidants (e.g. ferulic acid) after topical administration is limited by their poor solubility, low stability and short residence time. The aim of this work was to formulate ferulic acid in a nanocomposite platform composed of nanogels and micelles for efficient delivery to cornea. Solubility enhancement factor of ferulic acid was found to be equal to 1.9 ± 0.3 and 3.4 ± 0.3 for 50 and 100 mg/ml Pluronic® F68 micellar solutions. Hyaluronan was added to blank and ferulic acid loaded micelles, and then cross-linked with ε-polylysine. Hyaluronan nanogels showed dimensions of ~300 nm with positive zeta potential values. The formulations were characterized in terms of rheological behavior, biocompatibility, wound healing properties, ferulic acid release pattern and penetration into excised bovine corneas. In comparison to Pluronic® micelles that released ferulic acid rapidly, micelle-nanogel composites sustained the release up to 2 days. Furthermore, the micelle-nanogel formulation favored in vitro wound closure promoting fibroblasts growth and ex vivo accumulation of ferulic acid into both healthy and damaged corneas (>100 µg/cm2).
Collapse
Affiliation(s)
- Maria Aurora Grimaudo
- Laboratory of Drug Delivery Technology, Department of Drug Sciences, University of Catania, Catania, Italy; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Giovanni Amato
- Laboratory of Drug Delivery Technology, Department of Drug Sciences, University of Catania, Catania, Italy.
| | - Claudia Carbone
- Laboratory of Drug Delivery Technology, Department of Drug Sciences, University of Catania, Catania, Italy
| | - Patricia Diaz-Rodriguez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Teresa Musumeci
- Laboratory of Drug Delivery Technology, Department of Drug Sciences, University of Catania, Catania, Italy
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Giovanni Puglisi
- Laboratory of Drug Delivery Technology, Department of Drug Sciences, University of Catania, Catania, Italy
| |
Collapse
|
13
|
Ossai EC, Kuroiwa T, Horikoshi K, Otsuka Y, Terasawa J, Kanazawa A, Sato S, Ichikawa S. Lipid Vesicle Preparation Using W/O/W Multiple Emulsions Via Solvent Evaporation: The Effect of Emulsifiers on the Entrapment Yield of Hydrophilic Materials. J AM OIL CHEM SOC 2019. [DOI: 10.1002/aocs.12275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Emmanuel Chekwube Ossai
- Faculty of Life and Environmental SciencesUniversity of Tsukuba Tennodai 1‐1‐1, Tsukuba, Ibaraki 305‐8572 Japan
| | - Takashi Kuroiwa
- Department of Chemistry and Energy Engineering, Faculty of EngineeringTokyo City University Tamazutsumi 1‐28‐1, Setagaya‐ku, Tokyo 158‐8557 Japan
| | - Kaname Horikoshi
- Department of Chemistry and Energy Engineering, Faculty of EngineeringTokyo City University Tamazutsumi 1‐28‐1, Setagaya‐ku, Tokyo 158‐8557 Japan
| | - Yuya Otsuka
- Faculty of Life and Environmental SciencesUniversity of Tsukuba Tennodai 1‐1‐1, Tsukuba, Ibaraki 305‐8572 Japan
| | - Junki Terasawa
- Faculty of Life and Environmental SciencesUniversity of Tsukuba Tennodai 1‐1‐1, Tsukuba, Ibaraki 305‐8572 Japan
| | - Akihiko Kanazawa
- Department of Chemistry and Energy Engineering, Faculty of EngineeringTokyo City University Tamazutsumi 1‐28‐1, Setagaya‐ku, Tokyo 158‐8557 Japan
| | - Seigo Sato
- Faculty of Life and Environmental SciencesUniversity of Tsukuba Tennodai 1‐1‐1, Tsukuba, Ibaraki 305‐8572 Japan
| | - Sosaku Ichikawa
- Faculty of Life and Environmental SciencesUniversity of Tsukuba Tennodai 1‐1‐1, Tsukuba, Ibaraki 305‐8572 Japan
| |
Collapse
|
14
|
Martín Giménez VM, Díaz-Rodríguez P, Sanz RL, Vivero-Lopez M, Concheiro A, Diez E, Prado N, Enrique Kassuha D, Alvarez-Lorenzo C, Manucha W. Anandamide-nanoformulation obtained by electrospraying for cardiovascular therapy. Int J Pharm 2019; 566:1-10. [DOI: 10.1016/j.ijpharm.2019.05.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 01/20/2023]
|
15
|
Pinon L, Montel L, Mesdjian O, Bernard M, Michel A, Ménager C, Fattaccioli J. Kinetically Enhanced Fabrication of Homogeneous Biomimetic and Functional Emulsion Droplets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:15319-15326. [PMID: 30507132 DOI: 10.1021/acs.langmuir.8b02721] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Characterized by a fluid and deformable interface, ligand-functionalized emulsion droplets are used as model probes to address biophysical, biological, and developmental questions. Functionalization protocols usually rely on the use of headgroup-modified phospholipids that are dissolved in the oil phase prior to emulsification, leading to a broad range of surface densities within a given droplet population. With the aim to coat particles homogeneously with biologically relevant lipids and proteins (streptavidin, immunoglobulins, etc.), we developed a reliable surface decoration protocol based on the use of polar cosolvents to dissolve the lipids in the aqueous phase after the droplet production. We show that the surface density of the lipids at the interface has a narrow normal distribution for droplets having the same size. We performed titration isotherms for lipids and biologically relevant proteins on these drops. Then, we studied the influence of the presence of surfactants in the medium on lipid insertion and compared the results for a range of polar cosolvents of increasing polarity. To assess both the generality and the biocompatibility of the method, we show that we can produce more sophisticated, monodisperse functional magnetic emulsions with a very high surface homogeneity. Using an oil denser than the surrounding culture medium, we show that IgG-coated droplets can be used as probes for phagocytosis experiments.
Collapse
Affiliation(s)
- L Pinon
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS , 75005 Paris , France
- Institut Curie, PSL University, INSERM U932 , 26 rue d'Ulm , 75248 Paris Cedex 05 , France
| | - L Montel
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS , 75005 Paris , France
| | - O Mesdjian
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS , 75005 Paris , France
| | - M Bernard
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS , 75005 Paris , France
- UMR 144, Institut Curie , 12 rue Lhomond , 75005 Paris , France
| | - A Michel
- Sorbonne Université, CNRS, Laboratoire Physicochimie des Électrolytes et Nanosystèmes Interfaciaux PHENIX , 4 place Jussieu , F-75005 Paris , France
| | - C Ménager
- Sorbonne Université, CNRS, Laboratoire Physicochimie des Électrolytes et Nanosystèmes Interfaciaux PHENIX , 4 place Jussieu , F-75005 Paris , France
| | - J Fattaccioli
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS , 75005 Paris , France
| |
Collapse
|
16
|
Angelini G, Gasbarri C, Kazarian SG. Pluronic L121, BMIM BF4 and PEG-400 comparison to identify the best solvent for CO2 sorption. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.02.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
17
|
Aydin F, Chu X, Uppaladadium G, Devore D, Goyal R, Murthy NS, Zhang Z, Kohn J, Dutt M. Self-Assembly and Critical Aggregation Concentration Measurements of ABA Triblock Copolymers with Varying B Block Types: Model Development, Prediction, and Validation. J Phys Chem B 2016; 120:3666-76. [PMID: 27031284 DOI: 10.1021/acs.jpcb.5b12594] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The dissipative particle dynamics (DPD) simulation technique is a coarse-grained (CG) molecular dynamics-based approach that can effectively capture the hydrodynamics of complex systems while retaining essential information about the structural properties of the molecular species. An advantageous feature of DPD is that it utilizes soft repulsive interactions between the beads, which are CG representation of groups of atoms or molecules. In this study, we used the DPD simulation technique to study the aggregation characteristics of ABA triblock copolymers in aqueous medium. Pluronic polymers (PEG-PPO-PEG) were modeled as two segments of hydrophilic beads and one segment of hydrophobic beads. Tyrosine-derived PEG5K-b-oligo(desaminotyrosyl tyrosine octyl ester-suberate)-b-PEG5K (PEG5K-oligo(DTO-SA)-PEG5K) block copolymers possess alternate rigid and flexible components along the hydrophobic oligo(DTO-SA) chain, and were modeled as two segments of hydrophilic beads and one segment of hydrophobic, alternate soft and hard beads. The formation, structure, and morphology of the initial aggregation of the polymer molecules in aqueous medium were investigated by following the aggregation dynamics. The dimensions of the aggregates predicted by the computational approach were in good agreement with corresponding results from experiments, for the Pluronic and PEG5K-oligo(DTO-SA)-PEG5K block copolymers. In addition, DPD simulations were utilized to determine the critical aggregation concentration (CAC), which was compared with corresponding results from an experimental approach. For Pluronic polymers F68, F88, F108, and F127, the computational results agreed well with experimental measurements of the CAC measurements. For PEG5K-b-oligo(DTO-SA)-b-PEG5K block polymers, the complexity in polymer structure made it difficult to directly determine their CAC values via the CG scheme. Therefore, we determined CAC values of a series of triblock copolymers with 3-8 DTO-SA units using DPD simulations, and used these results to predict the CAC values of triblock copolymers with higher molecular weights by extrapolation. In parallel, a PEG5K-b-oligo(DTO-SA)-b-PEG5K block copolymer was synthesized, and the CAC value was determined experimentally using the pyrene method. The experimental CAC value agreed well with the CAC value predicted by simulation. These results validate our CG models, and demonstrate an avenue to simulate and predict aggregation characteristics of ABA amphiphilic triblock copolymers with complex structures.
Collapse
Affiliation(s)
- Fikret Aydin
- Department of Chemical Engineering and ‡New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey , Piscataway 08854, New Jersey, United States
| | - Xiaolei Chu
- Department of Chemical Engineering and ‡New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey , Piscataway 08854, New Jersey, United States
| | - Geetartha Uppaladadium
- Department of Chemical Engineering and ‡New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey , Piscataway 08854, New Jersey, United States
| | - David Devore
- Department of Chemical Engineering and ‡New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey , Piscataway 08854, New Jersey, United States
| | - Ritu Goyal
- Department of Chemical Engineering and ‡New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey , Piscataway 08854, New Jersey, United States
| | - N Sanjeeva Murthy
- Department of Chemical Engineering and ‡New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey , Piscataway 08854, New Jersey, United States
| | - Zheng Zhang
- Department of Chemical Engineering and ‡New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey , Piscataway 08854, New Jersey, United States
| | - Joachim Kohn
- Department of Chemical Engineering and ‡New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey , Piscataway 08854, New Jersey, United States
| | - Meenakshi Dutt
- Department of Chemical Engineering and ‡New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey , Piscataway 08854, New Jersey, United States
| |
Collapse
|
18
|
Zhang Y, Li Q, Welsh WJ, Moghe PV, Uhrich KE. Micellar and structural stability of nanoscale amphiphilic polymers: Implications for anti-atherosclerotic bioactivity. Biomaterials 2016; 84:230-240. [PMID: 26828687 DOI: 10.1016/j.biomaterials.2015.12.028] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/06/2015] [Accepted: 12/25/2015] [Indexed: 11/29/2022]
Abstract
Atherosclerosis, a leading cause of mortality in developed countries, is characterized by the buildup of oxidized low-density lipoprotein (oxLDL) within the vascular intima, unregulated oxLDL uptake by macrophages, and ensuing formation of arterial plaque. Amphiphilic polymers (AMPs) comprised of a branched hydrophobic domain and a hydrophilic poly(ethylene glycol) (PEG) tail have shown promising anti-atherogenic effects through direct inhibition of oxLDL uptake by macrophages. In this study, five AMPs with controlled variations were evaluated for their micellar and structural stability in the presence of serum and lipase, respectively, to develop underlying structure-atheroprotective activity relations. In parallel, molecular dynamics simulations were performed to explore the AMP conformational preferences within an aqueous environment. Notably, AMPs with ether linkages between the hydrophobic arms and sugar backbones demonstrated enhanced degradation stability and storage stability, and also elicited enhanced anti-atherogenic bioactivity. Additionally, AMPs with increased hydrophobicity elicited increased atheroprotective bioactivity in the presence of serum. These studies provide key insights for designing more serum-stable polymeric micelles as prospective cardiovascular nanotherapies.
Collapse
Affiliation(s)
- Yingyue Zhang
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Qi Li
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - William J Welsh
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick 08901, USA
| | - Prabhas V Moghe
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Kathryn E Uhrich
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA; Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|