1
|
Jiang Y, Qiu X, Zhao X, Fu Y, Su W, Li Y, Zhu Z, Zuo L, Lian X, Liu H, Jia Q, Yao J, Shan G. Preparation and optimization of dummy molecularly imprinted polymer-based solid-phase extraction system for selective enrichment of p-toluene sulfonate esters genotoxic impurities. J Chromatogr A 2024; 1728:465029. [PMID: 38810572 DOI: 10.1016/j.chroma.2024.465029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 05/31/2024]
Abstract
Sulfonate esters, one class of genotoxic impurities (GTIs), have gained significant attention in recent years due to their potential to cause genetic mutations and cancer. In the current study, we employed the dummy template molecular imprinting technology with a dummy template molecule replacing the target molecule to establish a pretreatment method for samples containing p-toluene sulfonate esters. Through computer simulation and ultraviolet-visible spectroscopy analysis, the optimal functional monomer acrylamide and polymerization solvent chloroform were selected. Subsequently, a dummy template molecularly imprinted polymer (DMIP) was prepared by the precipitation polymerization method, and the polymer was characterized in morphology, particle size, and composition. The results of the adsorption and enrichment study demonstrated that the DMIP has high adsorption capability (Q = 7.88 mg/g) and favorable imprinting effects (IF = 1.37); Further, it could simultaneously adsorb three p-toluene sulfonate esters. The optimal adsorption conditions were obtained by conditional optimization of solid-phase extraction (SPE). A pH 7 solution was selected as the loading condition, the methanol/1 % phosphoric acid solution (20:80, v/v) was selected as the washing solution, and acetonitrile containing 10 % acetic acid in 6 mL was selected as the elution solvent. Finally, we determined methyl p-toluene sulfonate alkyl esters, ethyl p-toluene sulfonate alkyl esters, and isopropyl p-toluene sulfonate alkyl esters in tosufloxacin toluene sulfonate and capecitabine at the 10 ppm level (relative to 1 mg/mL active pharmaceutical ingredient (API) samples) by using DMIP-based SPE coupled with HPLC. This approach facilitated the selective enrichment of p-toluene sulfonate esters GTIs from complex API samples.
Collapse
Affiliation(s)
- Yifei Jiang
- Institute of Medicinal Biotechnology, Peking Union Medical College & Chinese Academy of Medical Sciences, No.1, Tian Tan Xi Li, Beijing 100050, PR China
| | - Xiaodan Qiu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xuejia Zhao
- Institute of Medicinal Biotechnology, Peking Union Medical College & Chinese Academy of Medical Sciences, No.1, Tian Tan Xi Li, Beijing 100050, PR China
| | - Yao Fu
- National Institutes for Food and Drug Control, No. 2, Tian Tan Xi Li, Beijing 100050, PR China
| | - Wenling Su
- Xinjiang Key Laboratory of Uygur Medical Research, Xinjiang Institute of Materia Medica, Urumqi 830004, China
| | - Yiran Li
- Institute of Medicinal Biotechnology, Peking Union Medical College & Chinese Academy of Medical Sciences, No.1, Tian Tan Xi Li, Beijing 100050, PR China
| | - Zhiling Zhu
- Institute of Medicinal Biotechnology, Peking Union Medical College & Chinese Academy of Medical Sciences, No.1, Tian Tan Xi Li, Beijing 100050, PR China
| | - Limin Zuo
- Institute of Medicinal Biotechnology, Peking Union Medical College & Chinese Academy of Medical Sciences, No.1, Tian Tan Xi Li, Beijing 100050, PR China
| | - Xiaofang Lian
- Institute of Medicinal Biotechnology, Peking Union Medical College & Chinese Academy of Medical Sciences, No.1, Tian Tan Xi Li, Beijing 100050, PR China
| | - Huiyi Liu
- Institute of Medicinal Biotechnology, Peking Union Medical College & Chinese Academy of Medical Sciences, No.1, Tian Tan Xi Li, Beijing 100050, PR China
| | - Qingying Jia
- Institute of Medicinal Biotechnology, Peking Union Medical College & Chinese Academy of Medical Sciences, No.1, Tian Tan Xi Li, Beijing 100050, PR China
| | - Jing Yao
- National Institutes for Food and Drug Control, No. 2, Tian Tan Xi Li, Beijing 100050, PR China.
| | - Guangzhi Shan
- Institute of Medicinal Biotechnology, Peking Union Medical College & Chinese Academy of Medical Sciences, No.1, Tian Tan Xi Li, Beijing 100050, PR China.
| |
Collapse
|
2
|
Raesian P, Rad MS, Khodaverdi E, Motamedshariaty VS, Mohajeri SA. Preparation and characterization of fluorometholone molecular imprinted soft contact lenses as ocular controlled drug delivery systems. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
3
|
Mohammadinejad A, Kamrani Rad SZ, Karimi G, Motamedshariaty VS, Mohajeri SA. Preparation, evaluation, and application of dummy molecularly imprinted polymer for analysis of hesperidin in lime juice. J Sep Sci 2021; 44:1490-1500. [DOI: 10.1002/jssc.202001094] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/07/2021] [Accepted: 01/09/2021] [Indexed: 01/03/2023]
Affiliation(s)
- Arash Mohammadinejad
- Pharmaceutical Research Center Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmacodynamics and Toxicology School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - Seyedeh Zohreh Kamrani Rad
- Pharmaceutical Research Center Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
| | - Gholamreza Karimi
- Pharmaceutical Research Center Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmacodynamics and Toxicology School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - Vahideh Sadat Motamedshariaty
- Pharmaceutical Research Center Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
| | - Seyed Ahmad Mohajeri
- Pharmaceutical Research Center Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmacodynamics and Toxicology School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
4
|
Feroz M, Vadgama P. Molecular Imprinted Polymer Modified Electrochemical Sensors for Small Drug Analysis: Progress to Practical Application. ELECTROANAL 2020. [DOI: 10.1002/elan.202060276] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Momina Feroz
- Institute of Chemistry University of the Punjab 54590 Lahore Pakistan
| | - Pankaj Vadgama
- School of Engineering and Materials Science Queen Mary University of London Mile End Road London E1 4NS United Kingdom
| |
Collapse
|
5
|
Selective isolation of sesquiterpene coumarins from asafoetida using dummy molecularly imprinted solid phase extraction method. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1138:121943. [DOI: 10.1016/j.jchromb.2019.121943] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 11/17/2022]
|
6
|
Marchioni C, Vieira TM, Miller Crotti AE, Crippa JA, Costa Queiroz ME. In-tube solid-phase microextraction with a dummy molecularly imprinted monolithic capillary coupled to ultra-performance liquid chromatography-tandem mass spectrometry to determine cannabinoids in plasma samples. Anal Chim Acta 2020; 1099:145-154. [DOI: 10.1016/j.aca.2019.11.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 10/25/2022]
|
7
|
Abbasi Ghaeni F, Karimi G, Mohsenzadeh MS, Nazarzadeh M, Motamedshariaty VS, Mohajeri SA. Preparation of dual-template molecularly imprinted nanoparticles for organophosphate pesticides and their application as selective sorbents for water treatment. SEP SCI TECHNOL 2018. [DOI: 10.1080/01496395.2018.1461112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mohammad Nazarzadeh
- Polymer Division, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Vahideh Sadat Motamedshariaty
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ahmad Mohajeri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Culver HR, Steichen SD, Peppas NA. A Closer Look at the Impact of Molecular Imprinting on Adsorption Capacity and Selectivity for Protein Templates. Biomacromolecules 2016; 17:4045-4053. [PMID: 27936715 DOI: 10.1021/acs.biomac.6b01482] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Molecularly imprinted polymers (MIPs) are often investigated as lower cost, more environmentally robust alternatives to natural recognitive biomolecules, such as antibodies. When synthesized on the surface of nanomaterial supports, MIPs are capable of quick and effective binding of macromolecular templates when compared to traditional bulk-imprinted polymers. We have developed a method for imprinting proteins on biodegradable nanoparticle supports and have used these materials to investigate the impact of molecular imprinting on adsorption capacity and selectivity for lysozyme, the template protein. The imprinting process increased the adsorption capacity of the polymer for the template, lysozyme, with the MIPs being able to bind up to 83.5% of their dry weight as compared to 55.7% for nonimprinted polymers (NIPs). In noncompetitive binding experiments, where proteins were independently incubated with MIPs, the difference between adsorption capacity for lysozyme and proteins with much lower isoelectric points (pI < 8.0) was statistically significant. However, there was no statistical difference between adsorption capacity for lysozyme and other high-isoelectric point proteins, suggesting that MIPs are semiselective for this class of proteins. In competitive binding experiments, both MIPs and NIPs preferentially bound lysozyme over other high-isoelectric point proteins. This result demonstrated that imprinting alone could not account for the observed selectivity for lysozyme. Analysis of the solvent accessible surface area of lysozyme and its high-isoelectric point competitors revealed why lysozyme is an exceptional binder to the polymer system used in this work, with or without imprinting.
Collapse
Affiliation(s)
- Heidi R Culver
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, C0800, ‡Department of Biomedical Engineering, C0800, §McKetta Department of Chemical Engineering, C0400, ∥Department of Surgery and Perioperative Care, Dell Medical School, and ⊥College of Pharmacy, A1900, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Stephanie D Steichen
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, C0800, ‡Department of Biomedical Engineering, C0800, §McKetta Department of Chemical Engineering, C0400, ∥Department of Surgery and Perioperative Care, Dell Medical School, and ⊥College of Pharmacy, A1900, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Nicholas A Peppas
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, C0800, ‡Department of Biomedical Engineering, C0800, §McKetta Department of Chemical Engineering, C0400, ∥Department of Surgery and Perioperative Care, Dell Medical School, and ⊥College of Pharmacy, A1900, The University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
9
|
Ghorani B, Tucker N, Yoshikawa M. Approaches for the assembly of molecularly imprinted electrospun nanofibre membranes and consequent use in selected target recognition. Food Res Int 2015; 78:448-464. [DOI: 10.1016/j.foodres.2015.11.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/06/2015] [Accepted: 11/14/2015] [Indexed: 12/27/2022]
|
10
|
Molecularly imprinted polymeric micro- and nano-particles for the targeted delivery of active molecules. Future Med Chem 2015; 7:123-38. [PMID: 25686002 DOI: 10.4155/fmc.14.140] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Molecular imprinting (MI) represents a strategy to introduce a 'molecular memory' in a polymeric system obtaining materials with specific recognition properties. MI particles can be used as drug delivery systems providing a targeted release and thus reducing the side effects. The introduction of molecular recognition properties on a polymeric drug carrier represents a challenge in the development of targeted delivery systems to increase their efficiency. This review will summarize the limited number of drug delivery MI particles described in the literature along with an overview of potential solutions for a larger exploitation of MI particles as targeted drug delivery carriers. Molecularly imprinted drug carriers can be considered interesting candidates to significantly improve the efficiency of a controlled drug treatment.
Collapse
|
11
|
Tashakori-Sabzevar F, Mohajeri SA. Development of ocular drug delivery systems using molecularly imprinted soft contact lenses. Drug Dev Ind Pharm 2014; 41:703-13. [DOI: 10.3109/03639045.2014.948451] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
12
|
Seifi M, Hassanpour Moghadam M, Hadizadeh F, Ali-Asgari S, Aboli J, Mohajeri SA. Preparation and study of tramadol imprinted micro-and nanoparticles by precipitation polymerization: microwave irradiation and conventional heating method. Int J Pharm 2014; 471:37-44. [PMID: 24792981 DOI: 10.1016/j.ijpharm.2014.04.071] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 04/29/2014] [Accepted: 04/30/2014] [Indexed: 10/25/2022]
Abstract
In the present work a series of tramadole imprinted micro- and nanoparticles were prepared and study their recognition properties. Methacrylic acid (MAA), as a functional monomer, ethylene glycol dimethacrylate (EGDMA) as a cross-linker and different solvents (chloroform, toluene and acetonitrile (ACN)) were used for the preparation of molecularly imprinted polymers (MIPs) and non-imprinted polymers (NIPs). Several factors such as template/monomer molar ratio, volume of polymerization solvent, total monomers/solvent volume ratio, polymerization condition (heating or microwave irradiation) were also investigated. Particle size of the polymers, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), rebinding, selectivity tests and release study were applied for evaluation of the polymers. The optimized polymers with smaller particle size and superior binding properties were obtained in acetonitrile under heating method. MIPA4 with a size of 42.6 nm and a binding factor (BF) of 6.79 was selected for selectivity and release tests. The polymerization was not successful in acetonitrile and toluene under microwave irradiation. The MIPA4 could selectively adsorb tramadol, compared to imipramine, naltrexone and gabapentin. The data showed that tramadol release from MIPA4 was significantly slower than that of its non-imprinted polymer. Therefore, MIP nanoparticles with high selectivity, binding capacity and ability to control tramadol release could be obtained in precipitation polymerization with optimized condition.
Collapse
Affiliation(s)
- Mahmoud Seifi
- Biotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Chemistry, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| | - Maryam Hassanpour Moghadam
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzin Hadizadeh
- Biotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Safa Ali-Asgari
- Department of Chemistry, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| | - Jafar Aboli
- Department of Chemistry, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| | - Seyed Ahmad Mohajeri
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|