2
|
Tarannum N, Kumar D, Agrawal R, Verma Y. Selectively Imprinted β‐cyclodextrin Polymer for Colorimetric Assay of Lysophosphatidic Acid for Point of Care Detection of Ovarian Cancer. ChemistrySelect 2022. [DOI: 10.1002/slct.202202027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nazia Tarannum
- Department of Chemistry Chaudhary Charan Singh University Meerut 250004 India
| | - Deepak Kumar
- Department of Chemistry Chaudhary Charan Singh University Meerut 250004 India
| | - Ranu Agrawal
- Department of Applied Science SCRIET Chaudhary Charan Singh University Meerut 250004 India
| | - Yeshvandra Verma
- Department of Toxicology Chaudhary Charan Singh University Meerut 250004 India
| |
Collapse
|
3
|
Wang J, Wu J, Li Y, Wen J, Cai J, Tang T, Hu X, Xiang D. The Brief Analysis of Peptide-combined Nanoparticle: Nanomedicine's Unique Value. Curr Protein Pept Sci 2021; 21:334-343. [PMID: 32039679 DOI: 10.2174/1389203721666200210103841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 08/20/2019] [Accepted: 09/25/2019] [Indexed: 12/21/2022]
Abstract
Therapeutic peptides (TPs) are biological macromolecules which can act as neurotransmitters, hormones, ion channel ligands and growth factors. Undoubtedly, TPs are crucial in modern medicine. But low bio-stability and some special adverse reactions reduce their places to the application. With the development of nanotechnology, nanoparticles (NPs) in pharmaceutical science gained much attention. They can encapsulate the TPs into their membrane or shell. Therefore, they can protect the TPs against degradation and then increase the bioavailability, which was thought to be the biggest advantage of them. Additionally, targeting was also studied to improve the effect of TPs. However, there were some drawbacks of nano TPs like low loading efficiency and difficulty to manufacture. Nowadays, lots of studies focused on improving effect of TPs by preparing nanoparticles. In this review, we presented a brief analysis of peptide-combined nanoparticles. Their advantages and disadvantages were listed in terms of mechanism. And several examples of applications were summarized.
Collapse
Affiliation(s)
- Jiemin Wang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Junyong Wu
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Yongjiang Li
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Jing Wen
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Jiaxin Cai
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Tiantian Tang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Xiongbin Hu
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Daxiong Xiang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
6
|
Jafari S, Derakhshankhah H, Alaei L, Fattahi A, Varnamkhasti BS, Saboury AA. Mesoporous silica nanoparticles for therapeutic/diagnostic applications. Biomed Pharmacother 2018; 109:1100-1111. [PMID: 30551360 DOI: 10.1016/j.biopha.2018.10.167] [Citation(s) in RCA: 267] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 12/17/2022] Open
Abstract
Based on unique intrinsic properties of mesoporous silica nanoparticles (MSNs) such as high surface area, large pore size, good biocompatibility and biodegradability, stable aqueous dispersion, they have received much attention in the recent decades for their applications as a promising platform in the biomedicine field. These porous structures possess a pore size ranging from 2 to 50 nm which make them excellent candidates for various biomedical applications. Herein, at first we described the common approaches of cargo loading and release processes from MSNs. Then, the intracellular uptake, safety and cytotoxicity aspects of MSNs are discussed as well. This review also highlights the most recent advances in the biomedical applications of MSNs, including 1) MSNs-based carriers, 2) MSNs as bioimaging agents, 3) MSNs-based biosensors, 4) MSNs as therapeutic agents (photodynamic therapy), 5) MSN based quantum dots, 6) MSNs as platforms for upconverting nanoparticles, and 6) MSNs in tissue engineering.
Collapse
Affiliation(s)
- Samira Jafari
- Pharmaceutical Sciences Research Center, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Loghman Alaei
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Ali Fattahi
- Pharmaceutical Sciences Research Center, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Behrang Shiri Varnamkhasti
- Pharmaceutical Sciences Research Center, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
7
|
Poorakbar E, Shafiee A, Saboury AA, Rad BL, Khoshnevisan K, Ma'mani L, Derakhshankhah H, Ganjali MR, Hosseini M. Synthesis of magnetic gold mesoporous silica nanoparticles core shell for cellulase enzyme immobilization: Improvement of enzymatic activity and thermal stability. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.05.012] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
8
|
Lotfabadi A, Hajipour MJ, Derakhshankhah H, Peirovi A, Saffar S, Shams E, Fatemi E, Barzegari E, Sarvari S, Moakedi F, Ferdousi M, Atyabi F, Saboury AA, Dinarvand R. Biomolecular Corona Dictates Aβ Fibrillation Process. ACS Chem Neurosci 2018; 9:1725-1734. [PMID: 29676567 DOI: 10.1021/acschemneuro.8b00076] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Amyloid beta (Aβ), which forms toxic oligomers and fibrils in brain tissues of patients with Alzheimer's disease, is broadly used as a model protein to probe the effect of nanoparticles (NPs) on oligomerization and fibrillation processes. However, the majority of the reports in the field have ignored the effect of the biomolecular corona on the fibrillogenesis of the Aβ proteins. The biomolecular corona, which is a layer composed of various types of biomolecules that covers the surface of NPs upon their interaction with biological fluids, determines the biological fates of NPs. Therefore, during in vivo interaction of NPs with Aβ protein, what the Aβ actually "sees" is the human plasma and/or cerebrospinal fluid (CSF) biomolecular-coated NPs rather than the pristine surface of NPs. Here, to mimic the in vivo effects of therapeutic NPs as antifibrillation agents, we probed the effects of a biomolecular corona derived from human CSF and/or plasma on Aβ fibrillation. The results demonstrated that the type of biomolecular corona can dictate the inhibitory or acceleratory effect of NPs on Aβ1-42 and Aβ25-35 fibrillation processes. More specifically, we found that the plasma biomolecular-corona-coated gold NPs, with sphere and rod shapes, has less inhibitory effect on Aβ1-42 fibrillation kinetics compared with CSF biomolecular-corona-coated and pristine NPs. Opposite results were obtained for Aβ25-35 peptide, where the pristine NPs accelerated the Aβ25-35 fibrillation process, whereas corona-coated ones demonstrated an inhibitory effect. In addition, the CSF biomolecular corona had less inhibitory effect than those obtained from plasma.
Collapse
Affiliation(s)
| | - Mohammad Javad Hajipour
- Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 75147, Iran
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran 13169-43551, Iran
| | - Hossein Derakhshankhah
- Pharmacutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah 67145-67346, Iran
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Facile fabrication of poly(acrylic acid) coated chitosan nanoparticles with improved stability in biological environments. Eur J Pharm Biopharm 2016; 112:148-154. [PMID: 27890571 DOI: 10.1016/j.ejpb.2016.11.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 11/17/2016] [Accepted: 11/20/2016] [Indexed: 11/23/2022]
Abstract
Chitosan is one of the most important and commonly used natural polysaccharides in drug delivery for its biocompatible and biodegradable properties. However, poor blood circulation of the chitosan nanoparticles due to their cationic nature is one of the major bottlenecks of chitosan-based drug delivery systems. To address this problem, a versatile platform based on poly(acrylic acid) (PAA) coated ionically cross-linked chitosan/tripolyphosphate nanoparticles (CTS/TPP-PAA NPs), is reported. The zeta potentials of CTS/TPP and CTS/TPP-PAA NPs are approximately 33mV and -25mV, respectively. CTS/TPP NPs quickly aggregate in PBS (phosphate buffered saline) and DMEM (Dulbecco's modified Eagle's medium). Conversely, CTS/TPP-PAA NPs exhibit excellent colloidal stability in plasma solution for more than 24h. The PAA coating also endows CTS/TPP-PAA NPs with decreased protein adsorption capacity and improved buffering capacity. More importantly, the residual carboxyl and amino groups on CTS/TPP-PAA NPs provide abundant reactive sites for further functional modifications. Therefore, the CTS/TPP-PAA NPs reported here may be useful as an alternative drug delivery system.
Collapse
|
10
|
Taghizadeh B, Taranejoo S, Monemian SA, Salehi Moghaddam Z, Daliri K, Derakhshankhah H, Derakhshani Z. Classification of stimuli-responsive polymers as anticancer drug delivery systems. Drug Deliv 2014; 22:145-55. [PMID: 24547737 DOI: 10.3109/10717544.2014.887157] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Although several anticancer drugs have been introduced as chemotherapeutic agents, the effective treatment of cancer remains a challenge. Major limitations in the application of anticancer drugs include their nonspecificity, wide biodistribution, short half-life, low concentration in tumor tissue and systemic toxicity. Drug delivery to the tumor site has become feasible in recent years, and recent advances in the development of new drug delivery systems for controlled drug release in tumor tissues with reduced side effects show great promise. In this field, the use of biodegradable polymers as drug carriers has attracted the most attention. However, drug release is still difficult to control even when a polymeric drug carrier is used. The design of pharmaceutical polymers that respond to external stimuli (known as stimuli-responsive polymers) such as temperature, pH, electric or magnetic field, enzymes, ultrasound waves, etc. appears to be a successful approach. In these systems, drug release is triggered by different stimuli. The purpose of this review is to summarize different types of polymeric drug carriers and stimuli, in addition to the combination use of stimuli in order to achieve a better controlled drug release, and it discusses their potential strengths and applications. A survey of the recent literature on various stimuli-responsive drug delivery systems is also provided and perspectives on possible future developments in controlled drug release at tumor site have been discussed.
Collapse
Affiliation(s)
- Bita Taghizadeh
- Institute of Biochemistry and Biophysics, University of Tehran , Tehran , Iran
| | | | | | | | | | | | | |
Collapse
|